CPAP promotes timely cilium disassembly to maintain neural progenitor pool

Elke Gabriel, Arpit Wason, Anand Ramani, Li Ming Gooi, Patrick Keller, Andrei Pozniakovsky, Ina Poser, Florian Noack, Narasimha Swamy Telugu, Tomo Šaric, Federico Calegari, Anthony Hyman, Marco Gottardo, Giuliano Callaini, Fowzan AlKuraya and Jay Gopalakrishnan

Corresponding author: Jay Gopalakrishnan, University of Cologne

Review timeline:

- Submission date: 11 December 2015
- Editorial Decision: 27 January 2016
- Revision received: 03 February 2016
- Accepted: 05 February 2016

Editor: David del Alamo

Transaction Report:

Please note that the manuscript was previously reviewed at another journal and submitted here including the original referee comments, which were taken into consideration in the editorial decision-making process. These reports are not subject to EMBO’s transparent review process policy and can therefore not be published. The report below was provided by an arbitrating referee who had access to both the manuscript and the previous referee comments.

(Note: With the exception of the correction of typographical or spelling errors that could be a source of ambiguity, letters and reports are not edited. The original formatting of letters and referee reports may not be reflected in this compilation.)

Referee #1:

1st Editorial Decision 27 January 2016

Thank you for the submission of your manuscript entitled "CPAP promotes timely cilium disassembly to maintain neural progenitor pool" and please accept my apologies for the delay in getting back to you, but we have only now received the comments from the referee, which I copy below.

As you can see from his/her comments, the referee is rather supportive of your work, but point out to a number of concerns that will require your attention before your manuscript can be published in The EMBO Journal. I will not repeat here these issues, which essentially refer to further controls and clarifications. Please notice that they may require additional experimental evidence in at least some cases.

REFERRER REPORT

Referee #1:
The authors look at the role of a Seckel associated mutation in CPAP, also called Sas4, in cilium biogenesis and cell cycle progression. A proportion of fibroblasts derived from a Seckel patient are longer than controls and have abnormal centriole appendages. The proportion of fibroblasts in S-phase are decreased, and reentry into the cell cycle upon serum addition is slightly slowed. Ciliary disassembly may be slower and some form of ciliary remnant may be present in a portion of Seckel fibroblasts in mitosis. What this ciliary remnant corresponds to (does it have an axoneme?) is not clear.

CPAP interacts with a number of other centrosomal proteins, such as HDAC6, OFD1, NDE-1, CDK5RAP2, gamma tubulin and alpha tubulin. Given the diverse centrosomal proteins that seem to associate with CPAP, the analysis should be extended to some non-interacting centrosomal proteins, confirming the specificity of the assay.

The CC5 domain affected in this case of Seckel syndrome is sufficient to recapitulate many of these interactions. Several of these interacting proteins show reduced localization to the basal body in the Seckel fibroblasts, although this should be quantitated similar to what was done in Figure 2.

In vitro Seckel derived iPSCs show increased rapidity of differentiation into neurons. The Aurora kinase inhibitor Tozasertib increases ciliary length and also promotes differentiation, recapitulating some aspects of the Seckel cell model. Expression of a different mutant form of CPAP (E1235V) also caused a slight increase in neuronal differentiation. Cerebral organoids made from Seckel iPSC cells show reduced subventricular zones.

Two additional points remain to be addressed. Why aren't the cilia of Seckel fibroblasts longer than controls as measured in Fig. 2D? This seems to be inconsistent with the data in Fig. 1.

It is not possible to appreciate the OFD1 knockdown in Fig 5A or the CPAP knockdown in Fig 5E.

Our response to the reviewer is given in bold.

The authors look at the role of a Seckel associated mutation in CPAP, also called Sas4, in cilium biogenesis and cell cycle progression. A proportion of fibroblasts derived from a Seckel patient are longer than controls and have abnormal centriole appendages. The proportion of fibroblasts in S-phase are decreased, and reentry into the cell cycle upon serum addition is slightly slowed. Ciliary disassembly may be slower and some form of ciliary remnant may be present in a portion of Seckel fibroblasts in mitosis. What this ciliary remnant corresponds to (does it have an axoneme?) is not clear.

We are thankful to the reviewer for evaluating our work and providing us with positive feedback to improve our manuscript further.

The ciliary remnant that is positive for Arl13b is a ciliary membrane as was also observed by Paridaen et al., Cell 2013. Electron microscopy analyses by Paridaen et al., Cell 2013 reveals that the ciliary membrane is present near to a centriole. In addition, in mammalian cells the basal body is converted into a centriole during cell cycle re-entry (Dutcher et al, 2000). From these, it appears that the remnant we seldom observe (only in a very tiny number of cells, Fig. 2f) is a ciliary membrane. We have now explained it better in the manuscript (Page: 5 as well as the Figure legend 2F).

CPAP interacts with a number of other centrosomal proteins, such as HDAC6, OFD1, NDE-1, CDK5RAP2, gamma tubulin and alpha tubulin. Given the diverse centrosomal proteins that seem to associate with CPAP, the analysis should be extended to some non-interacting centrosomal proteins, confirming the specificity of the assay.

Very constructive point and we appreciate it. We indeed provided a Western blot showing Cap350, a centrosomal protein that does not co-purify with endogenous CPAP (Fig. 3a, c and
d) indicating the specificity of CPAP interaction with other CDC components. Perhaps, we have not explained it well in the figure legend.

To further strengthen this point that CPAP interacting proteins are indeed specific, we have now included another marker ODF2 (a mother centriolar appendage protein) that does not seem to co-purify with CPAP. This new information is now included and described in the legend for Fig. 3.

The CC5 domain affected in this case of Seckel syndrome is sufficient to recapitulate many of these interactions. Several of these interacting proteins show reduced localization to the basal body in the Seckel fibroblasts, although this should be quantitated similar to what was done in Figure 2.

The reviewer is referring to Fig. S6 and discusses about the reduced recruitment of CDC components (Aurora A, OFD1 and Nde1) in Seckel fibroblasts. To quantify the amount of protein being recruited in Seckel cells as compared to wild type cells, we have provided intensity quantification just beneath immunofluorescence panels in Fig. S6.

In vitro Seckel derived iPSCs show increased rapidity of differentiation into neurons. The Aurora kinase inhibitor Tozasertib increases ciliary length and also promotes differentiation, recapitulating some aspects of the Seckel cell model. Expression of a different mutant form of CPAP (E1235V) also caused a slight increase in neuronal differentiation. Cerebral organoids made from Seckel iPSC cells show reduced subventricular zones.

We appreciate this reviewer to find evaluate our disease modeling experiments

Two additional points remain to be addressed. Why aren't the cilia of Seckel fibroblasts longer than controls as measured in Fig. 2D? This seems to be inconsistent with the data in Fig. 1.

In Fig. 1, we analyzed cells growing asynchronously in the presence of serum. Whereas, in Fig. 2d, we analyzed the rate of cilium disassembly of Seckel and WT cells after they were synchronized at G0 by serum starvation for a prolonged period of 96 hrs. This is also depicted (Fig. S2a). This treatment causes both Seckel and WT cells to have equivalent cilia length. This allows us to estimate the rate of cilia disassembly upon serum stimulation.

Possibly, this point was not evident from the previous version. This is now fixed in the revised version (In the main text as well as at the figure legend). Page: 5, at the beginning of the last paragraph.

It is not possible to appreciate the OFD1 knockdown in Fig 5A or the CPAP knockdown in Fig 5E.

We have now provided better Western blots for Fig. 5a and 5e.

I am pleased to inform you that your manuscript has been accepted for publication in the EMBO Journal.
A- Figures

The data shown in figures should satisfy the following conditions:

- The data were obtained and processed according to the field's best practice and are presented to reflect the results of the experiments in a scientifically meaningful way.
- Graphs include clearly labeled error bars for independent experiments and sample sizes. Unless justified, error bars should not be shown for technical replicates.
- If n ≤ 5, the individual data points from each experiment should be plotted and any statistical test employed should be justified.
- Source data should be included to report the data underlying graphs. Please follow the guidelines set out in the authorship guidelines on Data Presentation.

2. Captions

Each figure caption should contain the following information, for each panel where they are relevant:

- A specification of the experimental system investigated (e.g., cell line, species name).
- The assay(s) and method(s) used to carry out the reported observations and measurements.
- An explicit mention of the biological and chemical entity(ies) that are being measured.
- A statement of how many times the experiment was independently replicated in the laboratory.
- Definitions of statistical methods and measures:
 - Standard definitions of 'center values' as median or average;
 - Definition of error bars as SEM or S.E.M.

Any descriptions too long for the figure legend should be included in the methods section and/or with the source data.

Please ensure that the answers to the following questions are reported in the manuscript itself. We encourage you to include a specific subsection in the methods section for statistics, reagents, animal models and human subjects.

In the pink boxes below, provide the page number(s) of the manuscript draft or figure legend(s) where the information can be located. Every question should be answered. If the question is not relevant to your research, please write NA (not applicable).

B- Statistics and general methods

1. How was the sample size chosen to ensure adequate power to detect a pre-specified effect size?

2. For animal studies, include a statement about sample size even if no statistical methods were used.

3. Describe inclusion/exclusion criteria if samples or animals were excluded from the analysis. Were the criteria pre-determined?

4. Were any steps taken to minimize the effects of subjective bias when assigning animals/samples to treatment (e.g., randomization procedure)? If yes, please describe.

5. For animal studies, include a statement about randomization even if no randomization was used.

6. Were any steps taken to minimize the effects of subjective bias during group allocation or/and when assigning results (e.g., blinding of the investigator)? If yes, please describe.

7. For animal studies, include a statement about blinding even if no blinding was done.

8. For every figure, are statistical tests justified as appropriate?

C- Reagents
D- Animal Models

5. Report species, strain, gender, age of animals and genetic modification status where applicable. Please detail housing conditions and the source of animals.

8. For experiments involving live vertebrates, include a statement of compliance with ethical regulations and identify the committee(s) approving the experiments.

10. We recommend consulting the ARRIVE guidelines (see link list at top right) (Plast Biol. 9(3): e1000432, 2010) to ensure that other relevant aspects of animal studies are adequately reported. See author guidelines, under "Reporting Guidelines". See also: NIH guidelines (see link list at top right); MRC (see link list at top right) recommendations. Please confirm compliance.

E- Human Subjects

1. Identify the committee(s) approving the study protocol.

2. Include a statement confirming that informed consent was obtained from all subjects and that the experiments conformed to the principles set out in the 1964 Declaration of Helsinki and the Department of Health and Human Services Belmont Report.

3. For publication of patient photos, include a statement confirming that consent to publish was obtained.

4. Report any restrictions on the availability (and/or use) of human data or samples.

5. Report the clinical trial registration number (at ClinicalTrials.gov or equivalent), where applicable.

6. For phase II and III randomized controlled trials, please refer to the CONSORT flow diagram and submit the CONSORT checklist (see link list at top right) with your submission. See author guidelines, under "Reporting Guidelines". Please confirm you have submitted this list.

8. For non-researcher conducted studies, we recommend that you follow the REMARK reporting guidelines (see link list at top right). See author guidelines, under "Reporting Guidelines". Please confirm you have followed these guidelines.

F- Data Accessibility

1. Provide accession codes for deposited data. See author guidelines, under "Data Deposition".

Data deposition in a public repository is mandatory for:

a. Primary, DNA and RNA sequences
b. Macromolecular structures
c. Crystallographic data for small molecules
d. Functional genomics data

2. Provide accession codes for deposited data. See author guidelines, under "Data Deposition".

3. Provide accession codes for deposited data. See author guidelines, under "Data Deposition".

4. Provide accession codes for deposited data. See author guidelines, under "Data Deposition".

5. Provide accession codes for deposited data. See author guidelines, under "Data Deposition".

6. Provide accession codes for deposited data. See author guidelines, under "Data Deposition".

7. Provide accession codes for deposited data. See author guidelines, under "Data Deposition".

8. Provide accession codes for deposited data. See author guidelines, under "Data Deposition".

9. Provide accession codes for deposited data. See author guidelines, under "Data Deposition".

10. Provide accession codes for deposited data. See author guidelines, under "Data Deposition".

11. Provide accession codes for deposited data. See author guidelines, under "Data Deposition".

E- Human Subjects

1. Identify the committee(s) approving the study protocol.

2. Provide accession codes for deposited data. See author guidelines, under "Data Deposition".

G- Dual use research of concern

1. List the dual-use agents or toxins that were used in your study. (see link list at top right). If no dual-use agents or toxins were used, provide a statement only if the study was funded by a dual-use agent or toxins program.