tRNA processing defects induce replication stress and Chk2-dependent disruption of piRNA transcription

Anahi Molla-Herman¹,², Ana Maria Vallés¹,², Carine Ganem-Elbaz¹,², Christophe Antoniewski³ & Jean-René Huynh¹,²,*

Abstract

RNase P is a conserved endonuclease that processes the 5′ trailer of tRNA precursors. We have isolated mutations in Rpp30, a subunit of RNase P, and find that these induce complete sterility in Drosophila females. Here, we show that sterility is not due to a shortage of mature tRNAs, but that atrophied ovaries result from the activation of several DNA damage checkpoint proteins, including p53, Claspin, and Chk2. Indeed, we find that tRNA processing defects lead to increased replication stress and de-repression of transposable elements in mutant ovaries. We also report that transcription of major piRNA sources collapse in mutant germ cells and that this correlates with a decrease in heterochromatic H3K9me3 marks on the corresponding piRNA-producing loci. Our data thus link tRNA processing, DNA replication, and genome defense by small RNAs. This unexpected connection reveals constraints that could shape genome organization during evolution.

Keywords Drosophila; dysgenesis; heterochromatin; oogenesis; transposon

Subject Categories Development & Differentiation; DNA Replication, Repair & Recombination; RNA Biology

DOI 10.15252/emby.2015.9343009 | Received 13 January 2015 | Revised 1 September 2015 | Accepted 4 September 2015 | Published online 15 October 2015

The EMBO Journal (2015) 34: 3009–3027

See also: S Yamanaka & H Siomi (December 2015)

Introduction

tRNAs are non-coding RNAs (~75 nt) transcribed by the RNA polymerase III and perform critical functions in protein synthesis (Dieci et al., 2007; Durdevic & Schaefer, 2013). In eukaryotes, tRNAs are encoded by a multigene family containing up to 500 genes in humans and 300 genes in Drosophila, clustered in many loci throughout the genome (Genomic tRNA database, http://gtrnadb.ucsc.edu). The transcription of tRNA genes gives rise to pre-tRNAs, which are processed into mature tRNAs by the action of two highly conserved RNases (Jarrous & Gopalan, 2010; Lai et al., 2010): RNase P, which cleaves the 5′ trailer, and RNase Z, which cleaves the 3′ trailer (Fig 1B). A non-templated CCA motif added at the 3′ end acts as a substrate for aminoacylation. Around one hundred posttranscriptional modifications have been reported for tRNAs, but the functional significance of very few has been tested (Engelke & Hopper, 2006; Durdevic & Schaefer, 2013). While critical defects in tRNA processing cause cell lethality, more subtle point mutations in the processing machinery can induce surprisingly specific phenotypes. For example, point mutations in the RNA kinase CLP1 disrupt tRNA splicing and cause brain disorders in mice and humans (Hanada et al., 2013; Karaca et al., 2014; Schaffer et al., 2014). Interestingly, this phenotype can be rescued by inactivating the stress sensor protein p53 in clp1 mutant mice (Hanada et al., 2013). This indicates that defects in the central nervous system are not simply consequences of protein synthesis and growth abnormalities. Moreover, additional reports have linked mutations in the tRNA biogenesis pathway with sterility phenotypes in humans, animals, and plants (Wang et al., 2012; Hussain et al., 2013; Lin et al., 2013; Pierce et al., 2013; Xie et al., 2013; Abbott et al., 2014). Less appreciated is the fact that tRNA genes are, together with tRNAs, the most transcribed genes in the genome and tRNAs represent major docking sites for RNA pol III (Dieci et al., 2007). From yeast to mammals, this peculiar feature renders these loci rather challenging to replicate, due to local conflicts between RNA pol III and DNA polymerase during S phase. The replication fork often pauses at tRNA loci, which can consequently become fragile sites for DNA lesions (Clelland & Schultz, 2010; Helmrich et al., 2013). Additionally, it has been shown that RNA pol III binding can define epigenetic boundaries involved in the formation and restriction of heterochromatin domains (Noma et al., 2006; Donze, 2012; Raab et al., 2012). Thus, the emerging view is that tRNA gene loci fulfill multiple roles as chromatin organizers and regulators of gene expression around their genomic localization, beyond their function in the production of tRNAs (Hull et al., 1994; Van Bortle & Corces, 2012; Good et al., 2013; Van Bortle et al., 2014). It thus remains unclear in tRNA-linked pathologies whether the...
cause(s) of disease involve abnormal protein synthesis, abnormal tRNA fragments, or indirect defects on the expression of other genes.

A second class of abundant RNAs required for fertility and also for neuronal development are Pwi-associated RNAs (priRNAs) (Siomi et al., 2011; Perrat et al., 2013; Ross et al., 2014). priRNAs are small non-coding RNAs of 23–28 nt, which silence transposable elements (TEs) by guiding Argonaute proteins to TE RNAs using sequence complementarity (Malone & Hannon, 2009; Sentí & Brennecke, 2010). Transposons represent 15% of the Drosophila genome and almost 50% of the human genome. TE mobilization can cause DNA damage, insertional mutagenesis, and chromosomal rearrangements, therefore constituting a threat to genome integrity.

priRNAs silence TEs both at the transcriptional level (TGS, transcriptional gene silencing) and at the posttranscriptional level (PTGS, posttranscriptional gene silencing) (Guzzardo et al., 2013). During PTGS, priRNAs guide Aubergine (Aub) and Argonaute 3 (Ago3) to TE transcripts, hence inducing their cleavage through Aub/Ago3 slicing activity (Brennecke et al., 2007; Li et al., 2009; Malone et al., 2009). During TGS, priRNAs guide Pwi to genomic TE copies, likely through nascent transcript recognition, where it promotes heterochromatinization through the deposition of repressive H3K9 methylation marks (Siensi et al., 2012; Darricarrère et al., 2013; Huang et al., 2013; Le Thomas et al., 2013; Rozhkov et al., 2013). In the absence of priRNAs, TEs become expressed and induce various oogenesis defects (early arrest of egg chamber development, dorsoventral patterning defects, etc.) leading to sterility. Interestingly, these phenotypes are due to the activation of DNA damage checkpoint proteins of the ATR/Chk2 pathway (Chen et al., 2007; Klattehoff et al., 2007; Pane et al., 2007). Indeed, inactivating chk2 in priRNA mutants such as aubergine (aub) or armitage (armt) rescues most of the morphological defects during oogenesis. Fertility, however, is not restored in these double mutants.

priRNAs are produced by about 140 loci or clusters mostly localized in centromeric and telomeric regions of the Drosophila genome (Brennecke et al., 2007). These clusters are thought to be transcribed into long transcripts made of intermingled TE sequences, which are then processed into small priRNAs (Sentí & Brennecke, 2010). Some of these clusters are very similar to regular genes. One such example is the flamenco locus, which produces most of the somatic priRNAs in follicle cells. Its transcription is initiated at a defined starting site and promoter; it is transcribed by the RNA polymerase II in one direction and transcripts are spliced alternatively (Goriaux et al., 2014). In contrast, other priRNA clusters such as the cluster 1 (42AB), which produces most of the germ line priRNAs, have unusual properties (Le Thomas et al., 2014a; Mohn et al., 2014). Firstly, cluster 1/42AB is transcribed by pol II in two opposite directions by a non-canonical mechanism. Secondly, it requires repressive H3K9me3 marks to be actively transcribed. In support of the latter point, mutations in the H3K9 methyltransferase egglens lead to a major loss of priRNAs, early oogenesis arrest, and sterility (Rangan et al., 2011). What defines a locus as a source of priRNAs is not fully understood (Le Thomas et al., 2014b). Recent genome-wide analysis, however, suggests that the chromatin environment plays a crucial role (Mohn et al., 2014). This includes the H3K9me3 mark as mentioned above, but also specific heterochromatin proteins such as Rhino, and the Rhino-binding proteins, Deadlock, and Cutoff. In addition, recent studies have shown that single TE insertions are also significant sources of priRNAs, besides priRNA clusters (Le Thomas et al., 2014a; Mohn et al., 2014; Shpiz et al., 2014).

Drosophila oogenesis has proven to be a crucial model system to study the roles of chromatin modifications and small RNAs-based mechanisms on germ cell development (Molla-Herman et al., 2014). The elementary unit of oogenesis is the egg chamber, which is made of 16 germ cells surrounded by an epithelium of somatic follicle cells. Only one of these germ cells will become the oocyte, the future egg (Huynh & St Johnston, 2004). The 15 other cells are nurse cells, which undergo many rounds of DNA replication without mitosis and become highly polyploid. Nurse cells transcribe actively their genome and provide the oocyte with RNA species and nutrients required for its development (Dej & Spradling, 1999; Huynh & St Johnston, 2004). In particular, they produce germ line piRNA precursors, which are processed into mature piRNAs in a structure surrounding each nurse cell nucleus called the “nuage” (Brennecke et al., 2007; Lim & Kai, 2007; Pane et al., 2007; Chambevron et al., 2008; Zhang et al., 2012). In contrast, the oocyte is arrested in prophase I of meiosis, and its DNA is highly compacted into a karyosome and transcriptionally inactive. The follicle cells encasing the germ line cyst also become polyploid at mid-oogenesis and are also actively replicating and transcribing their genome (Dej & Spradling, 1999). Moreover, follicle cells also produce many piRNAs, mainly originating from the flamenco locus localized close to the X chromosome centromere (Li et al., 2009; Sentí & Brennecke, 2010; Goriaux et al., 2014). Egg chambers are continuously produced throughout the adult life of the Drosophila female from both germ

Figure 1. Rpp30 mutations induce premature arrest of oogenesis in Drosophila.

A Ovaries from control heterozygous Rpp30³⁰⁻² flies (left), homozygous Rpp30³⁰⁻² or transheterozygous Rpp30³⁰⁻²/Rpp30³⁰⁻² flies (middle), and homozygous Rpp30³⁰⁻² carrying a copy of ubiRpp30CGFP transgene (right). Scale bar, 100 μm.

B Rpp30 is a subunit of RNase P (red); a ribozyme involved in pre-tRNA processing by cleaving the 5′ tail. The RNase Z (blue) cuts the 3′ tail of the pre-tRNA, and CCA motif is added, forming mature tRNA ready to bind an amino acid (aa).

C Gene region corresponding to Rpp30 (RNase P protein 30, adapted from Flybase). The P-element insertion (Rpp30³⁰⁻², dark gray) and the point mutation leucine to proline (Rpp30³⁰⁻², arrow) are shown.

D Ovaries were dissected and lysed and protein extracts analyzed by Western blot using anti-Rpp30, anti-GFP, or anti-tubulin antibodies. Orange arrows indicate overexpressed and endogenous Rpp30 signals. Genotypes are numbered as 1, 2, and 3.

E Rpp30-dependent early oogenesis arrest is restored by the expression of Rpp30CGFP transgene in two different genetic backgrounds. Left: Homozygous Rpp30³⁰⁻² ovariole expressing ubiquitous ubiRpp30CGFP (st, stage). Right: Transheterozygous Rpp30³⁰⁻²/Rpp30³⁰⁻² ovarioles overexpressing germ line-specific nanoGal4, UASrpp30CGFP. Note follicular somatic cells with no Rpp30CGFP expression (arrowhead). Magnifications show nuclear Rpp30 localization, Rpp30 perinuclear foci (arrow), and Orb (a specific oocyte marker). Scale bar, 10 μm.

F flp/FRT clones mutant for Rpp30³⁰⁻² specifically in the germ line (star) and/or the follicular cells (arrows) are detected by the absence of GFP. Magnifications show mutant oocytes with Orb mislocalization next to the karyosome (dotted circle) instead of being localized to the posterior, as seen in stage 3 (st.3) wild-type clones. Scale bar, 10 μm.
Figure 1.
line and somatic stem cells, which are located in the germarium at the anterior tip of each ovary (Huynh & St Johnston, 2004).

In recent years, it has become clear that many important developmental decisions on cell fate, cell polarization, and genome defense are set up during the early stages of oogenesis, from stem cells to stages 3–4 (Huynh & St Johnston, 2004; Jagut et al., 2013; Molla-Herman et al., 2014; Yan et al., 2014). Here, we report the identification of mutations affecting a subunit of RNase P causing an arrest of oogenesis at early stages. Our study reveals surprising links between tRNA processing, DNA replication, and piRNA transcription.

Results

Mutations in Rpp30, a subunit of RNase P, cause an early arrest of oogenesis

In an EMS mosaic screen for mutations affecting the early stages of Drosophila oogenesis, we isolated one mutant line, 18.2, which gave rise to viable but completely sterile females and to subfertile males (Jagut et al., 2013). Although viability was reduced (10% of expected progeny at 25°C and 20% at 18°C, see Table 1), homozygous mutant flies were of wild-type size. In contrast, homozygous mutant ovaries were rudimentary (Fig 1A), resulting from an arrest of oogenesis at early stages of development (stages 3–4, see below). These phenotypes hinted at some specific requirements of the mutated gene for gonad development. The 18.2 mutant line was lethal over the deficiency Df(2L)ED21, and viable but sterile over the P-element insertion PE/Rpp3018.2 (CG11606) (Table 1). The P(lacW)k01901 was lethal over itself and over Df(2L)ED21, indicating that 18.2 was an hypomorphic allele of Rpp30 (Table 1). We renamed the two alleles Rpp3018.2 and Rpp30P5 for the 18.2 mutation and the P-element insertion, respectively. Rpp30 is a small subunit of the highly conserved ribozyme RNase P, whose best described function is to cleave the 5′-trail sequence of pre-tRNAs (Fig 1B) (Xiao et al., 2002; Jarrous & Gopalan, 2010). We sequenced the 18.2 line and found that the Rpp3018.2 mutation changed the conserved leucine 83 into a proline and that the P(lacW)k01901 was inserted into the 5′ UTR of Rpp30 (Fig 1C). In addition, our genome-wide RNA-seq experiments (see below) revealed that levels of Rpp30 mRNA were reduced in Rpp3018.2 mutant ovaries (Fig EV1A). Moreover, Western blot analysis of ovarian extracts showed that amounts of Rpp30 protein were also diminished in Rpp3018.2 mutant ovaries (Fig 1D, lane 3). In addition, using the same antibody for immunostaining on ovaries, we found that the nuclear signal of Rpp30 was strongly affected in Rpp3018.2 mutant flies (Fig EV1B and C). Importantly, all phenotypes induced by Rpp3018.2 and Rpp30P5 mutations could be fully rescued by the ubiquitous expression of an Rpp30 cDNA tagged with GFP at the C-terminal end of the protein (Fig 1A and E, left panel).

As expected from the known co-transcriptional maturation of tRNAs, Rpp30-GFP localization was mainly nuclear (Jarrous & Reiner, 2007; Wichtowska et al., 2013). We also noticed localization at some perinuclear foci. Furthermore, the expression of Rpp30-GFP only in germ cells, using the nanos-G4d driver, was sufficient to completely rescue oogenesis (Fig 1E, right panel). This result suggested an important requirement for Rpp30 in germ cells. To further test this hypothesis, we induced clones of homozygous cells mutant for Rpp3018.2 only in somatic or in germ line cells using the Flip/FRT technique (Xu & Rubin, 1993). We observed that egg chambers with germ cells mutant for Rpp3018.2 were arrested as early as in homozygous mutant ovaries (Fig 1F, left). In contrast, egg chambers with entirely mutant follicle cells developed normally (Fig 1F, right). We also did not observe an additive effect when both germ cells and somatic cells were mutant in the same egg chamber (Fig 1F, right). We concluded that Rpp30 mutations affect oogenesis mainly by disrupting germ cell development.

An early arrest of oogenesis can signal a failure to grow before vitellogenesis. Weak growth can be caused by defects in ribosome biogenesis, such as in Minute mutants, which are viable but sterile (Cramton & Laski, 1994; Fichelson et al., 2009; Zhang et al., 2014). This can also be caused by defects in RNA polymerase III activity, which strongly reduces the bulk of tRNAs (Marshall et al., 2012; Rideout et al., 2012). In both cases, sterility is associated with flies or larvae of much reduced size. We did not observe such a reduction in size in Rpp3018.2 homozygous or in Rpp3018.2/Rpp30P5 transheterozygous flies. We thus performed further experiments to determine the cause(s) of sterility in Rpp30 mutant flies.

Rpp30 is required for the correct processing of pre-tRNA in Drosophila

As Rpp30 is a conserved subunit of RNase P, we first tested whether pre-tRNA processing was affected in Rpp30 mutant flies. We performed Northern blot analysis of wild-type and mutant extracts using probes directed against the 5′ and 3′ trail regions of the pre-tRNAHis and against an internal region retained in the mature tRNAHis (Fig 2) (Xie et al., 2013). Using the 5′ probe, we could detect the

Table 1. Viability and fecundity in Rpp30 mutants.

<table>
<thead>
<tr>
<th>Female genotype</th>
<th>Viabilitya</th>
<th>Fecundity</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rpp3018.2/Deficiency Df(2L)ED21</td>
<td>0</td>
<td>Sterile</td>
<td>80/80</td>
</tr>
<tr>
<td>Rpp30P5/Rpp30P5</td>
<td>0</td>
<td>Sterile</td>
<td>80/221</td>
</tr>
<tr>
<td>Rpp3018.2/CyoO</td>
<td>0.10</td>
<td>Sterile</td>
<td>28/808</td>
</tr>
<tr>
<td>Rpp3018.2/Rpp30P5</td>
<td>1.08</td>
<td>Sterile</td>
<td>751/821</td>
</tr>
<tr>
<td>FRT40A Rpp3018.2/CyoO; claspinP5</td>
<td>1.37</td>
<td>Sterile</td>
<td>845</td>
</tr>
<tr>
<td>FRT40A Rpp3018.2; claspinP5</td>
<td>0.26</td>
<td>Sterile</td>
<td>70/821</td>
</tr>
<tr>
<td>FRT40A Rpp30P5/Rpp3018.2; claspinP5</td>
<td>1.01</td>
<td>Sterile</td>
<td>89/527</td>
</tr>
<tr>
<td>FRT40A Rpp3018.2/CyoO; claspinP5/FM3 Ser</td>
<td>1.50</td>
<td>Fertile</td>
<td>476/518</td>
</tr>
<tr>
<td>FRT40A Rpp3018.2; claspinP5</td>
<td>0</td>
<td>Sterile</td>
<td>42/518</td>
</tr>
</tbody>
</table>

The viability (observed/expected ratio) and the fecundity (presence of hatched larvae) and the number of quantified flies observed.

aObserved/total.

© 2015 Institut Curie/CNRS
Published online: October 15, 2015

Anahi Molla-Herman et al RNase P links tRNA processing and genome defense

The EMBO Journal Vol 34 | No 24 | 2015

levels of mature tRNA are normal (Hanada et al., 2013; Karaca et al., 2014). Interestingly, this phenotype can be rescued by inactivating p53 in CLP1 mutant mice, indicating that the defects are caused by a p53-dependent stress response (Hanada et al., 2013). We thus genetically removed p53 in flies mutant for Rpp30. Strikingly, in double-mutant flies for Rpp30(6.2); p53(-1-IB-1), or Rpp30(6.2); p53(-1-IB-1)p53(-5A-3), we found egg chambers developing to late stages of oogenesis and even forming a few eggs (Fig 3A and Table 1). This rescue was only partial, as the majority of egg chambers were arrested and double-mutant flies remained sterile (Fig 3F and Table 1). Nonetheless, late stages of oogenesis were never observed in Rpp30 single mutants, indicating that one cause of arrest was the activation of a p53-dependent checkpoint. In flies, DNA damage is the main cause of p53 activation by the checkpoint effector kinase Chk2. We thus generated double-mutant flies for Rpp30 and chk2 (also known as mnk/loki in Drosophila) (Oishi et al., 1998; Xu et al., 2001). We found that most egg chambers developed into eggs in Rpp30(6.2); mnk(6); or Rpp30(6.2)/Rpp30(6); mnk(6) mutant flies (Fig 3B). In addition, these eggs were laid and fertilized, indicating that fertility was also restored. We also noticed a better rescue in aged flies than in young adults (Fig 3F). Inactivating chk2 thus led to a more complete rescue of oogenesis than inactivating p53. Importantly, we found that tRNA processing defects remained in Rpp30; chk2 double mutants, although oogenesis and fertility were rescued (Fig 2, lane 4). This result indicated that oogenesis can proceed normally despite the presence of elevated levels of intermediate forms of tRNAs when Chk2 is inactivated. We conclude that it is the activation of DNA damage checkpoints, which arrests oogenesis in Rpp30 mutant flies.

Rpp30 mutations increase DNA replication stress

What could be the source(s) of DNA damage in Rpp30 mutant ovaries? It is well-established in yeast and vertebrate cells that tRNA transcription creates stress during replication at specific loci in the genome (Deshpande & Newlon, 1996; Helmrich et al., 2013). Even under normal conditions, the high occupancy of RNA polymerase III (pol III) at tRNA gene loci is a block for the DNA polymerase (DNA pol) when replicating DNA. These pol III/DNA pol conflicts can destabilize the replication fork, lead to DNA lesions, and activate checkpoint proteins (Clelland & Schultz, 2010; Nguyen et al., 2010). Thus, given the known roles of tRNA loci as replication barriers and chromatin organizers, we hypothesized that replication stress could be a possible source of DNA damage in Rpp30 mutant ovaries, knowing that nurse cells undergo high rates of endoreplication (Noma et al., 2006; Donze, 2012; Raab et al., 2012). To test this hypothesis, we analyzed the localization of DNA pol and RNA pol III components in mutant and wild-type conditions. We found that PCNA, a core component of the replication machinery, was not associated with DNA in Rpp30(6.2) germ line clones, suggesting a collapse of replication forks (Fig 3C) (Mailand et al., 2013). This PCNA loss was restored in homozygous Rpp30(6.2) flies expressing ubiquiRpp30::GFP transgene (Fig EV1D). Furthermore, we found that Brf (a subunit of RNA pol III) accumulated as aggregates specifically in Rpp30 mutant germ cells (Fig 3D). It was thus plausible that high accumulation of Pol III could increase replication fork collapses and replication stress.

To investigate whether replication stress could block oogenesis, we generated flies mutant for both Rpp30 and a component of the replication stress checkpoint. Depending on the species, replication stress...
Figure 3. Rpp30 mutation leads to the activation of several checkpoint proteins and to replication stress.

A Rpp30^18.2 homozygous early oogenesis arrest is partially rescued by p53 mutation. Scale bar, 100 μm.
B Early oogenesis arrest found in Rpp30^18.2 homozygous ovaries is rescued by chk2 mutation (Rpp30^18.2, mnk^6g). Scale bar, 100 μm.
C Germ line clones mutant for Rpp30^18.2 were immunostained for PCNA (red). DAPI is in blue. Magnifications: PCNA signal in a control or mutant nurse cell. Scale bar, 10 μm.
D Germ line clones mutant for Rpp30^18.2 were immunostained for Brf (pol III) (red). DAPI is in blue. A Z-projection of Brf staining is shown. The arrow points to Brf aggregates in a mutant chamber. Scale bar, 10 μm.
E Early oogenesis arrest found in Rpp30^18.2 homozygous ovaries is partially rescued by claspin mutation (Rpp30^18.2; claspinEP/TM3). Scale bar, 100 μm.
F Quantification of rescued ovaries harboring at least one stage 9 egg chamber in genotypes numbered from 1 to 11. n = number of ovaries.
G Upper panel: Early oogenesis arrest found in Rpp30^18.2; sqd-S-HA transheterozygous ovaries is rescued by sqd-S-HA overexpression. Scale bars: 100 μm. Lower panel: Rpp30^18.2; sqd-S-HA ovaries were dissected and stained for Orb (green), HA (squid, red), and DAPI (blue). Scale bar, 10 μm.

Source data are available online for this figure.
activates the ATR/Chk1/Claspin pathway, the ATM/Chk2 pathway, or both. In Drosophila, Claspin appears most specific to replication stress (Lee et al., 2012), as Chk1 and Chk2 respond to a wider range of DNA damages (Reinhardt & Yaffe, 2009). Furthermore, Claspin is part of the replication fork machinery and is required for efficient regulation of DNA damages (Reinhardt & Yaffe, 2009). We thus tested whether a loss of this mark could play a part in the loss of piRNA precursor transcription. We carried out two independent ChIP experiments for H3K9me3 marks using ovaries of females and ovaries of similar size from newborn wild-type and mutant conditions. The RNA-seq data also revealed that expression of flamenco/cluster 8, the main piRNA-producing cluster in somatic cells was not reduced and appeared even slightly increased in mutant ovaries (Fig 4B and Table 3). Accordingly, flamenco transcription does not depend on H3K9me3, and somatic Rpp30 mutant clones were not associated with visible oogenesis defects (Fig 1F, right panel). Altogether, these data strongly suggest that Rpp30 mutations disrupt the chromatin surrounding the main tRNA genes locus and lead to a strong reduction in the transcription of the nearby major piRNA clusters in germ cells.

Mutations in Rpp30 cause a dramatic depletion of the piRNA population

Endo-siRNAs and piRNAs are the two main classes of small RNAs required to silence TEs in flies (Senti & Brennecke, 2010).
To analyze these small RNA populations, we performed small RNA-seq in $Rpp30^{18.2}$ and $Rpp30^{18.2}/Rpp30^\text{PE}$ mutant ovaries, and used as controls $Rpp30^{18.2}/CyO$ adults, newborn wild-type females (developmental control) and $Rpp30^{18.2}/ubi-Rpp30$-GFP ovaries (genetic background control), as well as aub mutant ovaries (positive control) (see Fig EV2 for size of ovaries). By investigating the size distribution of small RNAs matching TEs sequences, we found that the 23–28 nt population corresponding to piRNAs was dramatically decreased in $Rpp30$ mutant ovaries, almost as strongly as in aub (Fig 5A). In contrast, the population of endo-siRNAs (centered on 21 nt) was globally not affected, indicating that $Rpp30$ mutations disrupted piRNA production specifically. We focused on piRNAs mapping to unique piRNA-producing loci in the genome (Brennecke et al., 2007). We found that the main piRNA clusters were dramatically affected in $Rpp30$ mutants, such as cluster 1/42AB, cluster 2, and cluster 3, which account for the majority of germ line piRNAs (Fig 5B). Next, we investigated whether the processing of the remaining piRNAs in mutant germ cells was affected by analyzing the
“ping-pong” signal, which is the probability of complementary sense and antisense piRNAs to overlap by 10 nt (Brennecke et al., 2007; Gunawardane et al., 2007). It is a signature of piRNA biogenesis happening in the “nuage” of nurse cells by the slicing activity of Ago3 and Aub. We found that the overall percentage of ping-pong signal was strongly reduced in mutant germ cells (Fig 5C), but not completely abolished as in aub mutant ovaries (Brennecke et al., 2007; Gunawardane et al., 2007). This strong reduction in the ping-pong signal could reflect a strong reduction in the total amount of piRNAs.

We thus calculated the z-score of the ping-pong signal and found that in Rpp30Δ/+ mutants, it was close to wild-type levels, indicating that the processing of the remaining piRNAs in the germ line was not strongly affected by Rpp30 mutations. We then explored the cellular consequences of these defects by analyzing the morphology and composition of the nuage surrounding nurse cell nuclei, where the ping-pong processing of piRNAs takes place. The localization of Aubergine was dramatically altered: While Aub is normally organized as rings around each nurse cell nucleus, it was dispersed throughout the cytoplasm of mutant germ cells (Fig 5D). Ago3 and Maelstrom localizations were also affected forming clumps instead of adopting an even distribution around each nucleus as in the wild-type situation (Fig 5D). However, the structure of the nuage itself was globally preserved as revealed by the normal pattern of Krimper and Vasa (Fig EV3A). We concluded that Rpp30 mutations induced a dramatic depletion of germ line piRNAs. However, Rpp30 did not seem to play a critical role in processing piRNA precursors through the ping-pong cycle.

One striking feature of Rpp30; chk2 double mutant was a partial rescue of fertility. It contrasted with the inactivation of the same ATM/Chk2 checkpoint in aub, armI, or zucchini mutants, which alleviates oogenesis defects, but does not restore fertility (Klattenhoff et al., 2007; Pane et al., 2007). We thus analyzed the piRNA population in Rpp30; chk2 double-mutant ovaries. We found that the global population of piRNAs and unique mappers were significantly restored (Figs 5E and F, EV3B). Accordingly, we found by RT-qPCR that transcription of the main piRNA clusters 1 and 2 was significantly increased in Rpp30, chk2 double mutant compared to Rpp30 single mutant (Fig EV4A). In addition, we observed that this rescue of piRNA clusters transcription correlated well with a rescue of the H3K9me3 marks in Rpp30, chk2 double-mutant ovaries (Fig EV4C). We performed ChIP experiments for H3K9me3 marks and found for cluster 1 that in Rpp30, chk2 double-mutant ovaries, H3K9me3 levels were around 60% of wild-type as compared to 10% in Rpp30 single mutant; and for cluster 2, H3K9me3 levels were back to around 90% of wild-type as compared to 30% in Rpp30 single mutant (Fig EV4C). We also found that the localization of Aub to the nuage, Orb to the posterior cortex, and PCNA to nurse cell DNA, as well as the ping-pong signal, was almost mostly rescued (Figs 5E–H and EV4D). These results demonstrated that Rpp30 cannot have a crucial role in processing most piRNA precursors, despite the known endonuclease activity of RNase P. We concluded that Rpp30 mutations most likely affected the transcription of piRNAs but not their processing.

Transposable elements are de-repressed in Rpp30 mutant ovaries

We then analyzed the consequences of this reduction in piRNA production on transposable elements (TEs) regulation. We measured the steady-state mRNA levels of different TE families by RT-qPCR (Fig 6A). Most TEs showed a modest upregulation in Rpp30Δ/+ and Rpp30Δ/+;Rpp30PE mutants ovaries compared to Rpp30Δ/+/CyO and Rpp30Δ/+/Rpp30PE; ubi-Rpp30-GFP (meaning in the same genetic background). In contrast, specific TEs, such as l-element or 412, exhibited strong de-repression in Rpp30 mutant when compared to heterozygous flies (20- and 15-fold increase, respectively). These levels were comparable to the increases observed in aub mutants in which germ line piRNAs are almost completely absent. To obtain a genome-wide quantitative and

Table 3. piRNA clusters expression in Rpp30Δ/+ mutants.

<table>
<thead>
<tr>
<th>piRNA cluster number</th>
<th>Log2 fold change</th>
<th>P-value</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.75</td>
<td>6.54E-05</td>
<td>X</td>
</tr>
<tr>
<td>8</td>
<td>0.66</td>
<td>0.00999094</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>0.95</td>
<td>1.70E-05</td>
<td>X</td>
</tr>
<tr>
<td>62</td>
<td>1.15</td>
<td>0.00179612</td>
<td>2L</td>
</tr>
<tr>
<td>5</td>
<td>0.8</td>
<td>0.00988012</td>
<td>2L</td>
</tr>
<tr>
<td>35</td>
<td>0.89</td>
<td>0.00361372</td>
<td>2LHet</td>
</tr>
<tr>
<td>1</td>
<td>2.26</td>
<td>3.02E-41</td>
<td>2R</td>
</tr>
<tr>
<td>56</td>
<td>1.49</td>
<td>0.00030182</td>
<td>2R</td>
</tr>
<tr>
<td>142</td>
<td>0.86</td>
<td>0.00049812</td>
<td>2R</td>
</tr>
<tr>
<td>97</td>
<td>2.09</td>
<td>0.00344242</td>
<td>2R</td>
</tr>
<tr>
<td>6</td>
<td>1.16</td>
<td>4.25E-06</td>
<td>3L</td>
</tr>
<tr>
<td>32</td>
<td>1.52</td>
<td>0.00264842</td>
<td>3L</td>
</tr>
<tr>
<td>26</td>
<td>1.34</td>
<td>4.02E-09</td>
<td>3LHet</td>
</tr>
<tr>
<td>15</td>
<td>1.36</td>
<td>1.45E-06</td>
<td>3LHet</td>
</tr>
<tr>
<td>44</td>
<td>1.78</td>
<td>2.67E-05</td>
<td>3LHet</td>
</tr>
<tr>
<td>34</td>
<td>1.53</td>
<td>0.00024852</td>
<td>3LHet</td>
</tr>
<tr>
<td>12</td>
<td>1.14</td>
<td>0.00031772</td>
<td>3LHet</td>
</tr>
<tr>
<td>24</td>
<td>1.2</td>
<td>0.00112072</td>
<td>3LHet</td>
</tr>
<tr>
<td>57</td>
<td>0.89</td>
<td>0.00358162</td>
<td>3LHet</td>
</tr>
<tr>
<td>72</td>
<td>0.99</td>
<td>0.00368922</td>
<td>3LHet</td>
</tr>
<tr>
<td>59</td>
<td>2.11</td>
<td>1.35E-09</td>
<td>3RHet</td>
</tr>
<tr>
<td>37</td>
<td>2.06</td>
<td>8.50E-07</td>
<td>3RHet</td>
</tr>
<tr>
<td>36</td>
<td>1.47</td>
<td>0.00040720</td>
<td>3RHet</td>
</tr>
<tr>
<td>29</td>
<td>1.28</td>
<td>0.00012722</td>
<td>4</td>
</tr>
<tr>
<td>43</td>
<td>2.72</td>
<td>2.12E-09</td>
<td>U</td>
</tr>
<tr>
<td>10</td>
<td>0.93</td>
<td>0.00090590</td>
<td>U</td>
</tr>
<tr>
<td>7</td>
<td>1.69</td>
<td>0.00202430</td>
<td>U</td>
</tr>
<tr>
<td>94</td>
<td>1.66</td>
<td>0.00216030</td>
<td>U</td>
</tr>
<tr>
<td>68</td>
<td>1.38</td>
<td>0.00240003</td>
<td>U</td>
</tr>
<tr>
<td>77</td>
<td>1.16</td>
<td>0.00342780</td>
<td>U</td>
</tr>
<tr>
<td>74</td>
<td>1.8</td>
<td>0.00400030</td>
<td>U</td>
</tr>
<tr>
<td>14</td>
<td>1.08</td>
<td>0.00667577</td>
<td>U</td>
</tr>
</tbody>
</table>

The normalized fold change, the P-value, and the chromosome localization of the piRNA clusters that are affected in Rpp30Δ/+ mutants ovaries over white virgin transcriptome RNA-seq analysis.

The EMBO Journal Vol 34 No 24 | 2015 3017

© 2015 Institut Curie/CNRS
Figure 5.

RNase P links tRNA processing and genome defense
Anahi Molla-Herman et al

Published online: October 15, 2015
The EMBO Journal Vol 34 No 24 2015 © 2015 Institut Curie/CNRS
quality assessment of TE deregulation, we used our RNA-seq datasets of Rpp3018.2 mutant ovaries (Fig 6B and C). We found that on average TEs were significantly de-repressed, such as 412, and that some of them were highly de-repressed, such as l-element, as we previously showed (Fig 6A). P-element expression was also very high. Finally, we tested the genomic copies of TE families that were never seen in wild-type testes (Fig 6D).}

Discussion

This study started by the surprising observation that hypomorphic mutations in a tRNA processing enzyme could specifically induce sterility. Our results reveal that tRNA defects per se are not causing a failure to produce mature eggs. Instead, this defect is linked to the activation of several DNA damage checkpoint proteins leading to oogenesis arrest. We find that replication stress and transposon derepression are the likely causes of DNA damage in Rpp30 mutants, leading to the activation of the checkpoint proteins p53, Claspin, and Chk2, and premature interruption of oogenesis. tRNA-related pathologies in humans are associated with complex clinical phenotypes, including neuropathologies and sterility (Abbott et al., 2014). By revealing the chain of events leading to sterility in *Drosophila*, we hope that our study will shed light onto the etiology of these diseases. Here, we propose a model by which tRNA defects impact on chromatin organization in cis of tRNA-producing loci, inducing replication stress and collapse of piRNA transcription (Fig 7).

A model linking tRNA defects, replication stress, and piRNAs transcription

We found that Rpp30 mutations exacerbate replication conflicts, as shown by the accumulation of the pol III subunit Brf, the collapse of PCNA, the activation of Claspin, and the rescue by overexpression of Squid. In turn, these defects could disrupt the deposition of H3K9me3 heterochromatin marks in the surrounding region, as observed in our H3K9me3 ChIP experiments. In *Drosophila*, loss of H3K9me3 near tRNA genes would affect the transcription of neighboring loci sensitive to H3K9me3 levels. As demonstrated recently, loci producing piRNAs such as single TE insertions and dual-strand clusters are particularly sensitive to H3K9me3 levels (Mohn et al., 2014). Our model could thus explain why transcription of such loci is strongly affected if they are in close proximity to tRNA genes. Consequently, the strong reduction in piRNAs production in Rpp30 mutant ovaries leads to the de-repression of TEs, an increase in DNA damage, and an early arrest of oogenesis.

There are about 300 tRNA genes in *Drosophila* and about 140 piRNA clusters as defined in Brennecke et al. (2007). Although we did not find a perfect correlation between tRNA genes and piRNA
Figure 6. Rpp30 mutation leads to transposable elements overexpression.

A Ovaries of different genotypes were dissected for RNA extraction. RT-qPCR was performed using transposable elements-specific oligonucleotides. The boxplots show several pooled transposon fold changes obtained for different genotypes after normalization to control heterozygous Rpp30^{18.2}/CyO. Homozygous and transheterozygous Rpp30 flies (yellow and orange, respectively) show transposon overexpression, whereas Rpp30^{18.2}/Rpp30^{PE} ovaries carrying the ubIRpp30GFP transgene are similar to control. aub^{QC42}/aub^{QC42} ovaries (gray) were used as a positive control. Arrows point to some highly expressed transposons.

B Scatterplot showing the expression of canonical transposable elements from RNA-sequencing data obtained from white virgins versus Rpp30^{18.2} ovaries. Arrows point to P-element (P-ele) and I-element (I-ele). Transposons are indicated as red or black dots (significant or not significant fold change, respectively). Genes are indicated as yellow or gray dots (significant or not significant fold change, respectively).

C Significant transposons fold changes (P < 0.05) were pooled and shown in a boxplot (gray). Note that the median value (black bar) is above 0. Arrow indicates the P-element (P-ele). Fold changes of individual transposons are shown in a barplot. Red bars, upregulated transposons. Blue bars, downregulated transposons.

D Testes from control heterozygous, transheterozygous Rpp30^{18.2}/Rpp30^{PE} or aub^{WNY/QC42} were fixed and stained for Stellate crystal formation. Z-projections are shown.
cluster proximity for every single locus, the major piRNA clusters, accounting for the majority of germ line piRNAs, are all close to tRNA genes. For example, cluster 1 localized at 42AB and producing more than 30\% of germ line piRNAs, is less than 40 kb away from the main cluster of tRNA genes containing more than 15 tRNA genes (Fig 4A and Flybase 2R:2015985-2163232). Cluster 2 and cluster 6, which are also major producers of germ line piRNAs, are found close to several tRNA genes and are strongly affected in Rpp30 mutants. In contrast, transcription of flamenco, which has only low levels of H3K9me3, is slightly increased in Rpp30 mutant ovaries. In addition to piRNA clusters, we found that tRNA genes were very often intertwined with transposable elements (Fig 4A). Recently, these stand-alone TE insertions were shown to be major sources of piRNAs in addition to piRNA clusters (Mohn et al., 2014; Shpiz et al., 2014). Loss of H3K9me3 marks around tRNA genes would also affect these sources of piRNAs and further decrease the overall population of piRNAs in Rpp30 mutant germ cells.

How could mutations in the RNase P enzyme affect tRNA transcription and increase replication stress? We can envision at least three mutually non-exclusive hypotheses. Firstly, in human cells and in yeast, RNase P has been shown to bind chromatin at tRNA gene loci and to enhance their transcription by pol III (Reiner et al., 2006; Jarrous & Reiner, 2007). This function of RNase P directly couples tRNA transcription and early processing. Interestingly, in an RNase P mutant, pol III complexes are still normally recruited to tRNA genes, with conflicting effects on the progression of the replication machinery (Nielsen et al., 2013). If tRNAs are not properly folded, RNA pol III does not terminate transcription and remains on the locus. Regard-less, in an RNase P mutant, pol III stalling could induce improper folding of the transcript, inducing pol III stalling. A common event in these three hypotheses is the increased binding time of pol III (or associated factors) on tRNA genes, with conflicting effects on the progression of the replication machinery (Nguyen et al., 2010). These defects
would be especially pronounced in nurse cells, which are actively
endoreplicating their DNA. Accordingly, we found an accumulation
of the pol III subunit Brl in Rpp30 mutant nurse cells. It should be
noted that the overall amount of mature tRNAs seems normal in
Rpp30 mutants, and thus, only a subset of tRNA genes is likely to be
affected at a given time and/or in a given cell. Nonetheless, our data
show that defects even restricted to a subset of tRNA loci can induce
replication stress at a threshold sufficient to activate dedicated
checkpoints and arrest oogenesis.

It has been previously proposed that stalling of the replication
fork can be rescued by homologous recombination (Li & Heyer,
2008; O’Donnell et al., 2010; Alabert & Groth, 2012). As a result,
epigenetic marks such as histone modifications lack from both DNA
strands in the neighboring region, as we observed with the H3K9me3 mark. Our model is thus consistent with what has been
proposed for RNAi mutants in S. pombe, where increased transcrip-
tion–replication conflicts compromise H3K9me2 enrichment at centromeres (Kato et al., 2005; Zaratiegui et al., 2011). Recently,
these results were extended to genome-wide level in a Dicer 1
mutant yeast where tRNA genes loci were shown to be prominent
sites of transcription–replication conflicts between RNA pol II and
DNA pol (Castel et al., 2014). Our model could thus be generally
applicable in different species.

tRNA genes and transposable element insertion

Our model is based on the local effect of replication stress on
chromatin and thus relies on the genomic proximity of tRNA
genes and piRNAs producing sources. These sources can be
piRNA clusters but also single TE insertions as demonstrated
recently (Mohn et al., 2014; Shpiz et al., 2014). We would like
to speculate that this proximity is not random, as tRNA genes are
often associated with single transposons or transposon remnants,
such as piRNA clusters. In Saccharomyces cerevisiae and Dictyoste-
lium discoideum, retrotransposons of the Ty family show a strong
bias of insertions upstream of piL III transcripts (Qi et al., 2012).
In particular, the main Ty1 and Ty3 retrotransposons are inserted
almost exclusively upstream of tRNA genes. This insertion bias is
driven by direct interactions between TE integration proteins and
TFIIIB, an essential component of RNA pol III. This proximity
may help amplification of LTR-containing TEs, as they require
tRNAs to prime their retro-transcription (Mak & Kleiman, 1997).
Such a genome-wide analysis has not been done in other organ-
isms. Interestingly, it was recently reported in C. elegans that
tRNA genes are also linked to the production of piRNAs (also
known as 21U-RNAs) in germ cells (Kasper et al., 2014). The
SNPC-4 protein was shown to bind to tRNA genes located within
the two main piRNA-producing loci and to be required for the
transcription of piRNAs in germ cells (Kasper et al., 2014). The
authors also proposed that tRNA genes may create a chromatin
environment facilitating piRNAs transcription. The genomic and
functional proximity of tRNA genes and piRNAs sources could
thus be conserved across many species.

The single most de-repressed TE in our study is the P-element, a
DNA transposon. In contrast to retrotransposons, DNA transposons
cannot expand by retro-transposition (“copy-and-paste”), but move
by a “cut-and-paste” mechanism, which cannot explain an increase
in copy number (Siomi et al., 2011). An elegant study has shown
that P-elements transpose preferentially to origins of replication
(Spradling et al., 2011). This mechanism proposes that coordinating
transposition with replication could expand the number of P-element insertions, not only by sister-strand mediated repair (due
to the excision), but it would also allow one P-element to translo-
cate to several replication forks in a single S phase, thus multiplying
the number of integrated copies. In light of our results and others,
tRNA genes are strong replication blocks on which replication forks
are paused for extended periods of time. This would increase the
possibilities of expansion for P-elements and explain the preferential
insertions of these TEs in hard-to-replicate regions such as centro-
meres, telomeres, and tRNA gene loci. The relationship between
tRNA genes and transposable elements could thus be one of the
drivers that shaped the Drosophila genome during evolution.

Materials and Methods

Fly stocks

All flies were raised at 25°C with some exceptions (see below). The following fly stocks were used: w1118; Df(2L)ED21,
P{3’R55 + 3’}ED21/SM6a (Rpp30 deficiency, Bloomington 9177);
y,w,hs-FLP;nl5-GFP,FRT40A, Bloomington (BL); hs-FLP;His2B-RFP,
FRT40A was kindly provided by Yohanns Bellen’s (Institut Curie,
Paris); y,w,FRT40A-Rpp3018.2 stock was generated in a EMS screen
in the laboratory (Rpp3018.2, Jagut et al., 2009); y; w; P[lacW]
Rpp300101/CyO (Rpp30W, BL.10507); mnkD6 was kindly provided
by Uri Abdu (Ben Gurion University, Israel); p535-1-4 (BL. 6816);
p535-1-4 (BL.6815); aub(lacI), clp6, w1118/CyO (BL. 8517); aub(lacI),
clp6, w1118/CyO (BL. 4968); w1118 (BL. 3605); y; w; claspinaq45
and claspinaq5, w1118 (BL. 20287); claspinaq45, claspinaq57,
clapsin114, and claspinaq49 were kindly provided by Young-Han Song
(Hallym University, Republic of Korea). Rpp30; claspinaq4 double
mutants and FRT40A-Rpp3018.2, ubRpp30GFPM3, Ser stocks were
raised at 22°C. Rpp3018.2, mnkD6 double mutant was obtained by
standard recombination techniques, and mnkD6 mutation was verified by PCR. Sqd-S-HA transgenic flies were kindly provided by Trudi Schupbach (Prince-
enxon University) (spnA1 (BL. 3322); spnE1 (BL. 3327)).

Rpp3018.2 allele sequencing

DNA was extracted from single adult females homozygous for
Rpp3018.2 by squeezing one fly in 50 μl of squeezing buffer (10 mM
Tris–Cl pH 8.2; 1 mM EDTA; 25 mM NaCl; 200 μg/ml of proteinase
K). After 30-min incubation at 37°C and 95°C for 1–2 min, the solu-
tion was centrifuged for 5 min at maximum speed. The extracted
DNA was sequenced (Cogenics-Beckman). The pairs of oligonu-
cleotides (Sigma Aldrich) spanning the whole gene region are
detailed below.

The Geneious software was used to align the sequenced products
of Rpp30 (Flybase CG11606).

Rpp30GFPM transgene constructs

cDNA corresponding to Rpp30 (DGRC, GenBank AY075315) was
used to do a PCR (5’-CACCATGAGCAAAACAGGC-3’ and
5’-CGCACCTTTAAGTCGTATTTAAGGC-3’). The PCR product was

© 2015 Institut Curie/CNRS
purified and cloned into the pENTR/D-TOPO Gateway vector (Invitrogen) and subcloned into the pUbi (ubiquitous expression) and pUASp (germ line-specific expression) vectors, with a C-terminal GFP tag (Murphy and Huynh laboratory, DGRC, the Gateway vector). Transgenic lines were generated by standard methods (BestGene).

Flp/FRT clone generation

y,w; FRT40AGFP or FRT40ARFP were crossed with FRT40A Flp/FRT clone generation. GFP tag (Murphy and Huynh laboratory, DGRC, the Gateway vector pUASp (germ line-specific expression) vectors, with a C-terminal gen) and subcloned into the pENTR/D-TOPO Gateway vector (Invitro-gen) and resuspended in RNase-free H2O. DNA was digested with DNase following the indicated procedure (Ambion). RNA was precipitated with phenol–chloroform, chloroform, NaAc (0.3 M, pH 5.5), and isopropanol treatments. RNAs were washed with EtOH 100% and resuspended in RNase-free H2O. RNA quality was controlled by Bioanalyzer 2100 (Agilent technologies). RNA concentration was measured with a Nanodrop (Thermo Scientific) or a Qbit (Invitrogen). For RT–qPCR or small RNAs deep sequencing (Fastferm), ovaries from 50 control flies, 500 Rpp30 mutant flies, and about 50 Rpp30/Cyo, mnk80 double-mutant flies were used. For RNA-sequencing transcriptome analysis (Genomic Paris Centre), 900 ovaries of white virgins and 900 ovaries of Rpp30/Cyo were used.

Immunofluorescence experiments in ovaries and testes

Ovaries were dissected in PBS and then fixed in PFA 4% for 15 min (or 5 min for nuage components). After 3 washes in PBS, ovaries were permeabilized for 30 min with PBT (PBST Triton 0.2%). Ovaries were incubated with primary antibody overnight (O/N) at 4°C, then washed and incubated with secondary antibodies for 2 h at room temperature. After several washes, ovaries were incubated with Hoechst for 5 min, PBS was removed, and mounting solution was added (cityfluor Biovalley). The ovarioles were mounted on a microscope slide for observation removing late stages and eggs to better observe early stages. Testes were dissected in PBS and then fixed in 4% PFA in PBST 0.3% plus 3 volumes of heptane and incubated for 20 min at room temperature. After two washes in PBT 0.2% and 1 h in PBT 0.3% and BSA 3%, testes were incubated with primary antibody O/N in PBT 0.2%. After several washes, secondary antibody was added for 2 h in PBT 0.2%, testes were washed, incubated with Hoechst for 15 min in PBS, and incubated in cityfluor at 4°C until mounting. The following antibodies were used: mouse anti-Orb used at 1/250 [clones 6H8 and 4H8 Developmental Studies Hybridoma Bank]; rabbit anti-Aubergine (kindly provided by Paul Lasko, McGill University, Quebec) used at 1/10,000; rabbit anti-Argonaute3, anti-Piwi, anti-Krimper, anti-Stellate, anti-Vasa, anti-Rhino, and guinea pig anti-Maelstrom were kindly provided by Toshiie Kai (Temasek, Singapore) and/or William Themurkauf (University of Massachusetts), and were used at 1/500 or 1/1,000. Mouse anti-PCNA, used at 1/5,000 (clone PC10, Dako), was kindly provided by Nathalie Dostatni (Institut Curie, Paris). Rabbit anti-Brf, used at 1/500 was kindly provided by W.E. Stumph (San Diego University). Ovaries and testes were visualized with a confocal microscope Zeiss LSM 780. Images were acquired with Zen image software. Images were processed and mounted with Adobe Photoshop and Illustrator CS4. For testes, Z-stacks are shown as a Z-projection with the same acquisition settings in control and mutant conditions.

Quantification of Rpp3018,2 oogenesis arrest rescued by chk2, p53, and claspin mutations

Flies were kept for up to 1 week with yeast, ovaries were dissected in PBS and the percentage of ovaries with at least one stage 9 egg chamber were quantified as rescued.

RNA extraction from ovaries

Dissected ovaries were collected in cold PBS. Ovaries were homogenized with a pestle in TRIzol (Invitrogen) and were snap-frozen and stored at −80°C until RNA extraction. RNA was precipitated by standard methods with chloroform and isopropanol, washed in EtOH 70%, and resuspended in RNase-free H2O (Sigma). DNA was digested with DNase following the indicated procedure (Ambion). RNA was precipitated with phenol–chloroform, chloroform, NaAc (0.3 M, pH 5.5), and isopropanol treatments. RNAs were washed with EtOH 100% and resuspended in RNase-free H2O. RNA quality was controlled by Bioanalyzer 2100 (Agilent technologies). RNA concentration was measured with a Nanodrop (Thermo Scientific) or a Qbit (Invitrogen). For RT–qPCR or small RNAs deep sequencing (Fastferm), ovaries from 50 control flies, 500 Rpp30 mutant flies, and about 50 Rpp30/Cyo, mnk80 double-mutant flies were used. For RNA-sequencing transcriptome analysis (Genomic Paris Centre), 900 ovaries of white virgins and 900 ovaries of Rpp30/Cyo were used.

Small RNA sequencing

RNA samples of 5 μg were prepared from ovaries’ extractions (see above). High-throughput sequencing was done with Illumina HiSeq, 10% single-reads lane 1×50 bp. (Fastferm), 15–29 nt RNAs sequences excluding rRNA (riboZero) were sequenced. For genomic and canonical transposons annotations, we used the D. melanogaster release 5.49 gene or all-transposon annotation files from FlyBase (http://flybase.org). For piRNA cluster positions, we used the coordinates given in Brennecke et al (2007). All the analyses were performed with Galaxy tools (https://mississippi.snv.jussieu.fr). Reads were normal-ized first by obtaining bank size factors by DESeq geometrical normalization (version 1.0.0) from miRNA count lists (Bowtie tool sRbowtie, version 1.1.0, Dmel_mir_r20, 1 mismatch allowed) and then by normalizing the different banks to the smallest one (Rpp30/Cyo). General piRNA populations were identified by matching the reads to transposable elements (Bowtie tool sRbowtie, version 1.1.0, Dmel_all-transposon, 1 mismatch allowed) and then by analyzing the size of the reads: the piRNAs being from 23 to 28 nt. To study the specific piRNA sequences, unique mappers were obtained (Bowtie tool, sRbowtie, version 1.1.0, Dmel_all-transposon, 1 mismatch allowed) and then matched on specific positions corresponding to piRNA clusters, as determined by Brennecke et al (2007). Ping-pong signal (23- to 28-nt RNA reads whose 5’ ends overlapped with another 23- to 28-nt RNA read on the opposite strand) was calculated with the multi-mapper piRNA populations (Bowtie tool, sRbowtie, version 1.1.0, Dmel_all-transposon, 1 mismatch allowed) and shown as a percentage or as a z-score, as previously done (de Vanssay et al, 2012; Antoniewski, 2014).

RNA sequencing

RNA samples of 1 μg were prepared from ovaries’ extractions from white virgins or Rpp30/Cyo stocks raised at 18°C. RNAs were used for directional RNA sequencing in Genomic Paris Centre. ScriptSeqTM mRNA-Seq Library Preparation Kit (epicenter) and Ribosomal RNAs Ribo-ZeroTM RNA Removal Kit (epicenter) were used. After quality control analysis, reads were matched to the genome with the help of TopHat2 tools. Bank size differences were solved with
DESeq geometrical tool, and reads were normalized to the smallest bank. DESeq2 tool was used to infer significant differences between control and mutant situations. The base mean of biological duplicates, the fold change, and the P-value were calculated. The expression profiles of genes, transposons, or piRNAs clusters are shown with boxplots, scatterplots, or barplots obtained using R software (http://www.r-project.org/). The visualization of reads was done in Galaxy (https://mississippi.snv.jussieu.fr).

Datasets deposition

Small RNA sequencing and RNA-sequencing data have been deposited in the European Nucleotide Archive (ENA) of the EMBL-EBI (http://www.ebi.ac.uk/ena), accession number: PRJEB10569. Galaxy analyses histories are available upon request.

RT-qPCR

cDNA was prepared from 5 μl of RNA using standard methods: random primers, 10 μM of dNTP mix, 5° first strand buffer, 0.1 M DTT, RNase out inactivator, and Superscript III RT 200 U/μl (Invitrogen). For qPCR, serial dilutions of cDNA were used to analyze oligonucleotides efficiency and to estimate the optimal cDNA quantity to use. The 384-well plates (Thermo Scientific) were used, each containing 2 μl of cDNA mix and 8 μl of Primer mix with Syber Green (Roche). Each point was tested in triplicate with 2 different biological samples. The real-time qPCR was done with Applied Biosystems® ViIA™ 7. The results were normalized to control conditions (heterozyogous Rpp3018.2/CyO), and the fold change was calculated. The fold changes found for several transposons were pooled and are shown in boxplots obtained with the R software for different genotypes. The oligonucleotides used are detailed below.

Small RNAs enrichment and Northern blot

RNA was extracted from 100 whole adult females for wild-type or mutant conditions. To obtain a fraction enriched with low molecular weight (LMW) RNAs (< 200 nt), high molecular weight (HMW) RNAs were precipitated by incubating 100 μg of total RNA with NaCl (5 M) and 20% PEG 8000. After 30 min at 4°C, the mixture was spun for 10 min at 4°C at maximum speed and the supernatant was transferred with the LMW-RNAs into a new tube. Small RNAs were precipitated by adding 3 volumes of EtOH (200 g/ml) and CaCl2 5 mM were added and incubated for 30 min at 55°C. DNA was obtained by standard phenol/chloroform/isoamylac acid purification protocols and extracted using Phase Lock Gel Light (5prime). After centrifugation, the aqueous phase with DNA was precipitated using EtOH 100%, NaAc 0.3 M, and glycogen 20 μg/ml. The DNA concentration was measured with QuBit (Invitrogen) and the quality of DNA analyzed by agarose gel electrophoresis 1%, observing the typical smear of fragmented DNA around 500 bp. For immunoprecipitation, 50 μl of Dynabeads-A (Invitrogen) were incubated with 500 μl of ChiP blocking buffer (CBB) (TWEEN-20 0.5%; BSA 5 mg/ml in PBS) for 30 min at 4°C in movement. After 2 washes with CBB at 4°C, beads were resuspended in 195 μl of CBB, and 5 μl of antibody H3K9me3 (Actif motif Ref.39161, batch number 13509002) was added and incubated O/N at 4°C. Beads were then washed 3 times with CBB at 4°C and resuspended in 100 μl of CBB. In parallel, chromatin was treated with incubation buffer prepared ex-tempo (Triton X-100 0.3%; NaDOC 0.3%, EDTA 15 mM, pH 8, PMSF 3 mM, protease inhibitors 1+). Keeping 10% of the volume for the input control. The chromatin was mixed with beads and incubated O/N at 4°C in movement. After 7 washes with ChiP-RIPA buffer at 4°C and one wash in TE/NaCl 50 mM, the mixture was resuspended in 200 μl of TES buffer and incubated for 30 min at 65°C under shaking conditions. After centrifugation at maximum speed, the supernatant containing the methylated chromatin was incubated O/N at 65°C to reverse the cross-link and then treated with RNase-A and proteinase K as described above, to purify the DNA and to do qPCR analysis. To estimate the methylation level of different piRNA clusters, transposon elements, and genes, the PCR results were analyzed as following: the

ChiP experiments

For ChiP experiments, we used 25 adult white flies for control ovaries, 900 flies for white virgins or Rpp3018.2 mutants (stocks raised at 18°C), and 50 flies for double mutants Rpp3018.2, mnk56. Ovaries were dissected in cold PBS then fixed with 1.8% formaldehyde for 10 min at room temperature (RT) and then quenched with glycine 125 mM for 5 min at RT. After 3 washings in cold PBS, liquid-free ovaries were snap-frozen and stored at −80°C until used. For cell lysis and DNA fragmentation, ovaries were sequentially incubated for 10 min on ice with the following ex-tempo prepared buffers in the presence of protease inhibitors: (1) HEPES–KOH 50 mM, pH 7,5; NaCl 140 mM; EDTA 1 mM, pH 8; glycerol 10%; NP-40 0.5%; Triton X-100 0.25%; (2) NaCl 200 mM; EDTA 1 mM, pH 8; EGTA 0.5 mM, pH 8; Tris 10 mM, pH 8; (3) EDTA 1 mM, pH 8; EGTA 0.5 mM, pH 8; Tris 10 mM, pH 8; sarkosyl 0.5%. After incubation with 1 ml of buffer 3, ovaries were lysed with a Bioruptor (Diagenode) for 10 min in high position, making pulses of 30 s on/off, followed by centrifugation at maximum speed for 10 min at 4°C. The supernatant was kept and an aliquot of 20–30 μl was set aside. To test the quality and quantity of the DNA extract, this aliquot was incubated with TE-SDS 1% (TES) buffer, and the cross-link was reversed in a water bath O/N at 65°C. After dilution to decrease the SDS concentration to 0.5%, RNase-A was added (200 μg/ml) and incubated for 2 h at 37°C and, then, proteinase K (200 μg/ml) and CaCl2 5 mM were added and incubated for 30 min at 55°C. DNA was obtained by standard phenol/chloroform/isoamylac acid purification protocols and extracted using Phase Lock Gel Light (5prime). After centrifugation, the aqueous phase with DNA was precipitated using EtOH 100%, NaAc 0.3 M, and glycogen 20 μg/ml. The DNA concentration was measured with QuBit (Invitrogen) and the quality of DNA analyzed by agarose gel electrophoresis 1%, observing the typical smear of fragmented DNA around 500 bp. For immunoprecipitation, 50 μl of Dynabeads-A (Invitrogen) were incubated with 500 μl of ChiP blocking buffer (CBB) (TWEEN-20 0.5%; BSA 5 mg/ml in PBS) for 30 min at 4°C in movement. After 2 washes with CBB at 4°C, beads were resuspended in 195 μl of CBB, and 5 μl of antibody H3K9me3 (Actif motif Ref.39161, batch number 13509002) was added and incubated O/N at 4°C. Beads were then washed 3 times with CBB at 4°C and resuspended in 100 μl of CBB. In parallel, chromatin was treated with incubation buffer prepared ex-tempo (Triton X-100 0.3%; NaDOC 0.3%, EDTA 15 mM, pH 8, PMSF 3 mM, protease inhibitors 1+). Keeping 10% of the volume for the input control. The chromatin was mixed with beads and incubated O/N at 4°C in movement. After 7 washes with ChiP-RIPA buffer at 4°C and one wash in TE/NaCl 50 mM, the mixture was resuspended in 200 μl of TES buffer and incubated for 30 min at 65°C under shaking conditions. After centrifugation at maximum speed, the supernatant containing the methylated chromatin was incubated O/N at 65°C to reverse the cross-link and then treated with RNase-A and proteinase K as described above, to purify the DNA and to do qPCR analysis. To estimate the methylation level of different piRNA clusters, transposon elements, and genes, the PCR results were analyzed as following: the

phosphorimager (Amersham/GE Healthcare). The sequences of probes used are detailed below. RNA sizes were analyzed with Dynamarker (B2 Scientific).

RNAse P links tRNA processing and genome defense

Anahi Molla-Herman et al
percentage of input was calculated: % input = \frac{2^{(corrected\ CT\ input - CT)} \times 100.\ These\ values\ were\ normalized\ to\ a\ control\ gene\ (actin-5C\ or\ Rp49).\ The\ oligonucleotides\ used\ are\ detailed\ below.

Western blots and Rpp30 antibody

Ovaries were dissected in cold PBS, incubated in lysis buffer for 20 min at 4°C (Chromotech), and centrifuged at 10 min at maximum speed at 4°C to exclude cell debris and yolk. Denatured ovary protein extracts were separated on 4–15% Mini PROTEAN TGX gel (Biorad) and electrotransferred to nitrocellulose membranes with Trans-Blot Turbo Mini Nitrocellulose Transfer Packs (Biorad). Membranes were blocked O/N at 4°C in blocking buffer (PBS, 0.1% Tween-20, 5% milk) and incubated O/N in the same buffer containing primary antibodies at the following dilutions: rabbit anti-GFP at 1/10,000 (Ahmed El Marjou, Institut Curie, proteomic platform), mouse anti-α-tubulin (clone DM1A, Sigma) at 1/5,000, and purified rabbit anti-Rpp30 at 1/500 (Proteogenik). After three washes in PBS-T (PBS, 0.1% Tween-20), membranes were incubated for 2 h with secondary antibody in blocking buffer containing HRP-Goat anti-rabbit or anti-mouse (Jackson Immunoresearch) diluted at 1/10,000 (Ahmed El Marjou, Institut Curie, proteomic platform), mouse anti-mouse (Jackson Immunoresearch) diluted at 1/500 (Proteogenik). After washing, membranes were visualized using a mini-LAS-4000 Imaging System (Fujifilm). Protein sizes were analyzed using Precision Plus Protein Dual Color Standards (Biorad). The purified rabbit anti-Rpp30 was made by Proteogenik with the following Rpp30 C-terminal peptide: ADAFEVKDGTEHAIKRLKVA (Table EV1).

Expanded View for this article is available online: http://emboj.embopress.org

Acknowledgements

We are grateful to D. Bourchis, S. Castel, E. Heard, P. Léopold, A. Le Thomas, A. Lengronne, M. Walter, M. Wasnaf, N. Zamudio, and S. Jensen for helpful discussions and advices. We thank Déborah Bourchis, Edith Heard, and Clément Carré for critical reading of the manuscript; DSHB (Iowa University) for antibodies; and Bloomington Drosophila Stock center for fly stocks. We thank W.E. Stumph (San Diego State University) for Brf antibody. We thank the imaging facility (PICT@BDD). This work was supported by the CNRS, ANR (PiSTiSPri to C.A. and J.R.H.), DEEP LabEx, FSER (Schlumberger), Ville de Paris, and Fondation Alabert C, Groth A (2012) Chromatin replication and epigenome maintenance. Not Rev Mol Cell Biol 13: 153 – 167

Crampton S, Laski F (1994) String of pearls encodes Drosophila ribosomal protein 52, has Minute-like characteristics, and is required during oogenesis. Genetics 137: 1099 – 1048

RNase P links tRNA processing and genome defense

Anahi Molla-Herman et al

Published online: October 15, 2015

The EMBO Journal

RNase P links tRNA processing and genome defense

Anahi Molla-Herman et al

Le Thomas A, Toth KF, Aravin AA (2014b) To be or not to be a piRNA: genomic origin and processing of piRNAs. *Genome Biol* 15: 204

Van Bortle K, Corces VG (2012) tDNA insulators and the emerging role of TFIIIC in genome organization. Transcription 3: 277–284

Van Bortle K, Nichols MH, Li L, Ong CT, Takenaka N, Qin ZS, Corces VG (2014) Insulator function and topological domain border strength scale with architectural protein occupancy. Genome Biol 15: R82

