Triggered Ca$^{2+}$ influx is required for extended-synaptotagmin 1-induced ER-plasma membrane tethering

Appendix

Table of Contents

1. Appendix Figure S1
2. Appendix Figure S2
3. Appendix Figure S3
4. Appendix Figure legends
Appendix Figure S1

Idevall-Hagren et al
Appendix Figure S2
Idevall-Hagren et al
Appendix Figure S3
Idevall-Hagren et al
Appendix Figure S1 (relates to Figures 1-3). Western blot detection of exogenously expressed proteins in HeLa cells.
A. Predicted molecular weights of mCherry and the mCherry fusion proteins used in the study.
B. Western blot detection of mCherry immunoreactivity in HeLa cell lysates.
C. Western blot detection of E-Syt1 immunoreactivity in lysates of HeLa cells expressing the indicated mCherry fusion proteins. NT – non-transfected, * denotes non-specific band.

Appendix Figure S2 (relates to figure 2). Modeling of the C-terminal domains of the E-Syts.
Surface electrostatic potential of human E-Syt1 C2E, E-Syt2 C2C (PDB code 2DMG) and E-Syt3 C2C domains. Positive potential is shown in blue and negative potential in red. Three dimensional models of E-syt1 C2E and E-yt3 C2C domains were generated by Phyre2 (Kelley & Sternberg, 2009).

Appendix Figure S3. Proposed model for Ca$^{2+}$-induced recruitment of E-Syt1 to the plasma membrane. In excitable cells, Ca$^{2+}$ influx through voltage-regulated Ca$^{2+}$ channels results in exocytosis, triggered by the interaction between secretory vesicle-localized synaptotagmin-1 and plasma membrane PI(4,5)P$_2$. In addition, this stimulus results in E-Syt1/2 recruitment to the plasma membrane. Cooperativity between the Ca$^{2+}$-binding C2C domain and the PI(4,5)P$_2$-binding C2E domain of E-Syt1 are key to this interaction. The C2A domain of both E-Syt1 and E-Syt2/3 also contains a Ca$^{2+}$ binding site that stimulates binding to lipid bilayers but does not require acidic phospholipids in the bilayer (Xu et al, 2014). Whether this domain binds to the plasma membrane in trans or to the ER in cis remains unclear (“?”).

References
