Supplemental Figure 5
Supplemental Figure S5: (A) Total bronchial epithelial cells (BE) positive for mGFP measured by FACS after gating on total CCSP positive cells in Control (Con) and in rotenone (Rot)-induced condition with MSC overexpressed Miro1 (MSCmiro^{Hi}), MSC downregulated Miro1 (MSCmiro^{Lo}) and control cDNA (MSCmiro^{Cc}) and shRNA treated MSCs (MSCmiro^{Sc}) into mice lungs. (B) Western blot for Cytochrome C in cytosolic fractions of CE-induced mice lungs show increased release of cytochrome C along with similar expressions in MSCmiro^{Lo} treated CE-induced condition, but with MSCmiro^{Hi} treatment there is decrease in cytochrome C in cytosol, indicating reduced cell death and effectivity of the overexpression of Miro1 in improving MSC rescue function. (C) Estimation of mitochondrial transfer from mitoGFP transfected human MSCs (hMSCs) to IL-13 stimulated monocyte supernatant treated BEAS-2B, as measured with %mGFP counts in FACS, show that efficient mitochondrial transfer was mediated from MSCmiro^{Hi} as compared to control MSC while MSCmiro^{Lo} were ineffective donors. * denotes p<0.05 vs “BEAS-2B+ hMSC (con)”; # denotes p<0.05 vs “BEAS-2B(I) + hMSC(con)” (D) the ROS stress recovery efficiency by the hMSCs which was measured by mitoSOX fluorescence in epithelial population by FACS shows that MSCmiro^{Hi} were efficient in reduction of ROS stress as compared to naive MSC (con), while the MSC miro^{Lo} were ineffective when co-cultured with human epithelial BEAS-2B(I) already induced with supernatant from IL-13 treated monocytes *in vitro*. * denotes p<0.05 vs BEAS-2B; # denotes p<0.05 vs “BEAS-2B (I). “BEAS-2B (I)” indicates IL-13 the induced BEAS-2B cells.