Legends to Supplementary Figures

Supplementary Figure 1
β1-integrin-deficient tumor cells are prone to cell cycle arrest.
(A) Cell cycle analysis of control βTi(fl/fl) and β1-integrin-deficient βTi(Δ/Δ) cells by staining with propidium iodide and FACS analysis (* p<0.05, unpaired t-test).
(B) Immunoblotting analysis of p21Cip1 expression in lysates from βTi(fl/fl) and βTi(Δ/Δ) cells. Immunoblotting for actin was used as loading control.

Supplementary Figure 2
Depletion of β1-integrin in b tumor cells does not affect the tumor stroma.
(A –C) Frozen histological sections of tumors from RT2;β1(fl/fl) and RCre;RT2;β1(fl/fl) mice were analyzed by immunofluorescence staining with antibodies against the hematopoietic marker CD45 (A), the endothelial cell marker CD31 (B) and the pericyte marker NG2 (C). The percentages of positive cells were determined using ImageJ software of the National Institutes of Health (http://rsb.info.nih.gov/ij/). For each genotype and each staining, 20 tumor sections from a total of 4 mice were investigated.
(D) Single cell suspensions from RT2;β1(fl/fl) and RCre;RT2;β1(fl/fl) tumors were stained with fluorescence-labeled antibodies against β1-integrin and CD31 and subjected to FACS analysis. The percentages of double-positive cells were determined using CellQuest software (BD Biosciences, San Jose, CA, USA).
(E) Immunofluorescence co-stainings for insulin (green), glucagon (red) and nuclei (DAPI, blue) on frozen tumor sections of RT2;β1(fl/fl) and RCre;RT2;β1(fl/fl) mice.