IgG transcytosis and recycling by FcRn expressed in MDCK cells reveals ligand-induced redistribution

T.S. Ramalingam1,2, Scott A. Detmer1, W. Lance Martin1 and Pamela J. Bjorkman1,2,3

1Division of Biology 156-29 and 2Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA

3Corresponding author: Division of Biology 156-29, Caltech, Pasadena, CA 91125, USA

e-mail: bjorkman@its.caltech.edu

The neonatal Fc receptor (FcRn) transports IgG across epithelial cells and recycles serum IgG. FcRn binds IgG at the acidic pH of endosomes and releases IgG at the basic pH of blood. We expressed rat FcRn in polarized MDCK cells and demonstrated that it functions in transcytosis and recycling of IgG. In the absence of IgG, FcRn is distributed predominantly apically, but redistributes to basolateral locations upon IgG addition, indicating that ligand binding induces a signal that stimulates transcytosis. FcRn transcytoses IgG more efficiently in the apical to basolateral than the reverse direction when IgG is internalized by receptor-mediated endocytosis at acidic pH or by fluid phase endocytosis at basic pH. The PI 3-kinase inhibitor wortmannin disrupts basolateral recycling and transcytosis in both directions, but only minimally reduces apical recycling. Confocal imaging and quantitative IgG transport studies demonstrate that apically-internalized IgG recycles to the apical surface mainly from wortmannin-insensitive apical early endosomes, whereas FcRn–IgG complexes that transcytose to the basolateral surface pass through downstream Rab11-positive apical recycling endosomes and transferrin-positive common endosomal compartments.

Keywords: confocal microscopy/endocytosis/FcRn/polarized cells/wortmannin

Introduction

Passive acquisition of antibody is important to the newborn prior to the development of a fully functional immune system. Transfer of maternal immunoglobulin G (IgG) molecules to the fetus or infant allows mammalian neonates to acquire humoral immunity to antigens encountered by the mother. The transfer of IgG is mediated by a membrane-bound MHC class I-related Fc receptor known as the neonatal Fc receptor (FcRn), after its initial discovery in the gut of suckling rats (Jones and Waldman, 1972). In newborn rodents, FcRn proteins on the apical side of intestinal enterocytes bind to maternal IgG in ingested milk, escort the IgG across the gut epithelium, then release it into the bloodstream from the basolateral surface in the process of transcytosis (Ghetie and Ward, 2000). The pH difference between the apical (pH 6.0–6.5) and basolateral (pH 7.0–7.5) sides of intestinal epithelial cells ensures efficient unidirectional transport of IgG, since FcRn binds IgG at pH 6.0–6.5 but not at neutral or higher pH (Rodewald, 1976; Simister and Mostov, 1989). Although the acidic pH at the apical surface of intestinal epithelial cells permits cell surface FcRn to bind IgG, FcRn can also function in IgG transport when there is no net pH gradient. For example, FcRn has been implicated in transport of IgG across the human placenta and in rescuing serum IgG from a default degradative pathway (reviewed in Ghetie and Ward, 2000). For these functions, it is believed that IgG in the blood (pH 7.4) enters cells in a receptor-independent manner via fluid phase endocytosis, after which it is delivered to acidic endosomes where it binds to FcRn. Upon delivery of FcRn–IgG complexes to the cell surface, the slightly basic pH of the blood causes IgG release into the circulation.

In vitro systems involving transfected polarized tissue culture cells have been used to examine transcytosis and recycling by a number of receptors, such as the polymeric immunoglobulin receptor (pIgR), an Fc receptor that transports dimeric IgA (Mostov et al., 2000). Much of the basic understanding of transcytotic pathways comes from studies of basolateral to apical transcytosis of pIgR-mediated transcytosis of IgA in polarized epithelial monolayers of Madin–Darby canine kidney (MDCK) cells (Mostov et al., 2000). In contrast to the thorough characterization of basolateral to apical transcytosis in MDCK cells, less is known about the behavior of receptors such as FcRn, which can transport IgG in the opposite direction. Here we report the generation of MDCK cells expressing rat FcRn or a rat FcRn–green fluorescent protein (GFP) chimera that function in FcRn-mediated transcytosis of IgG in both apical to basolateral and basolateral to apical directions. We show that transcytosis and recycling of IgG occurs after internalization by both receptor-mediated endocytosis at acidic pH and fluid phase endocytosis at basic pH and that IgG uptake causes a redistribution of FcRn from primarily apical regions to more basolateral regions. Fluorescence imaging and quantitative studies using radiolabeled IgG reveal some of the intracellular compartments through which FcRn–IgG complexes travel during transcytosis and recycling. The FcRn- and FcRn–GFP-expressing MDCK cells reproduce many aspects of FcRn function in vivo and can be used to study the mechanism of FcRn transport in polarized epithelial cells.

Results

Expression of FcRn in MDCK cells

FcRn is a type I membrane glycoprotein consisting of a membrane-bound heavy chain non-covalently associated with the light chain β2-microglobulin (Simister and
Fig. 1. Confocal images demonstrating cell surface binding of IgG to FcRn- and FcRn-GFP-expressing MDCK cells. Bar, 5 μm. FcRn-, FcRn-GFP- and untransfected MDCK cells were incubated at 4°C with 500 nM Alexa568-labeled rat IgG at pH 6.0 or 7.3. Untransfected cells did not show detectable binding at either pH (data not shown).

Mostov, 1989). We expressed rat FcRn/rat β2-microglobulin heterodimers in MDCK cells in two forms: full-length FcRn and an FcRn–GFP chimeric protein in which GFP was fused C-terminally to the FcRn cytoplasmic tail. Cells expressing FcRn were isolated by flow cytometry using fluorescence from GFP and/or staining with an anti-FcRn antibody. Functional binding to IgG was confirmed by demonstrating that IgG binds significantly to the surface of cells expressing FcRn and FcRn–GFP at acidic but not basic pH (Figure 1).

The lack of significant binding of IgG to FcRn at basic pH suggested that IgG entering cells at pH 7.3 does so through fluid phase uptake rather than by receptor-mediated endocytosis via binding to FcRn. However, low affinity binding events that are undetectable in the fluorescence binding assay could contribute to IgG uptake at basic pH. To investigate this possibility, we compared uptake of the fluid phase marker dextran and IgG. Alexa568-labeled dextran or rat IgG was added at a concentration of 3 μM for 7 min at 37°C to the apical side of serum-starved FcRn–GFP-expressing MDCK cells or untransfected cells, and fluorescence from internalized ligands was measured. Assuming that both IgG and dextran are fluid phase markers, we calculated the apparent volume of fluid that was endocytosed after IgG or dextran incubation (Table 1). As expected, a larger apparent volume of fluid is endocytosed when IgG is incubated with transfected cells at pH 6.0 than when incubated at pH 7.3, due to receptor-mediated uptake at acidic pH. The apparent volumes of fluid endocytosed at pH 7.3 were approximately equal in transfected and untransfected cells in the presence of IgG, demonstrating that binding to FcRn does not contribute significantly to IgG uptake at basic pH. A 4- to 5-fold larger apparent volume of fluid is endocytosed when cells are incubated at pH 7.3 with IgG compared with dextran, but the increased uptake of IgG over dextran cannot be due to interactions with FcRn at basic pH since this effect is observed with untransfected cells as well as with FcRn-expressing cells.

<table>
<thead>
<tr>
<th>Table 1. Comparison of apparent volumes of fluid endocytosed by MDCK cells when incubated with IgG or dextran</th>
</tr>
</thead>
<tbody>
<tr>
<td>FcRn-GFP</td>
</tr>
<tr>
<td>MDCK (nl)</td>
</tr>
<tr>
<td>Alexa568-IgG</td>
</tr>
<tr>
<td>pH 6.0</td>
</tr>
<tr>
<td>Alexa568-dextran</td>
</tr>
<tr>
<td>pH 6.0</td>
</tr>
</tbody>
</table>

For each value, the average of two measurements is shown with the difference between the two measurements in parentheses.

Taken together, these results demonstrate that IgG uptake at pH 7.3 occurs primarily via fluid phase endocytosis rather than receptor-mediated endocytosis resulting from binding to cell surface FcRn.

Redistribution of FcRn upon addition of IgG

We used GFP fluorescence or a labeled anti-FcRn antibody to visualize FcRn–GFP or FcRn in transfected MDCK cells. Confocal fluorescence images of serum-starved cells show that both FcRn and FcRn–GFP are localized to the apical surface, where a punctate pattern characteristic of the apical plasma membrane with its numerous microvilli is observed, and to vesicles beneath the apical surface (Figure 2A). Less fluorescence is observed in sections below the levels of the tight junctions (here visualized with a labeled antibody against the tight junction-associated protein ZO-1; red staining in Figure 2A and B). The distribution of FcRn and FcRn–GFP changes when ligand (1 μM rat IgG) is added to the apical side of cell monolayers at pH 7.3. Overall, less fluorescence is observed at the apical membrane and increased fluorescence is seen in optical sections below the tight junctions, including increased fluorescence in intracellular vesicles and at the basolateral membrane (Figure 2B). FcRn–GFP shows extensive co-localization with labeled IgG at each level (Figure 2C). These results suggest that FcRn trafficking from apical to basolateral locations is stimulated by ligand binding.

Addition of serum to the media causes a redistribution of FcRn–GFP similar to that resulting from addition of rat IgG (data not shown). The serum-induced redistribution implies that the levels of bovine IgG in our media (10% serum, ~3 μM bovine IgG) are sufficient for binding and intracellular transport by rat FcRn even though soluble rat FcRn binds bovine IgG only weakly (with at least a 20-fold lower affinity than that with which it binds rat, mouse or human IgG) (Huber, 1994). A competition study confirmed that high levels of bovine IgG compete effectively with 100 nM labeled rat IgG for apical to basolateral transport across MDCK cells (see Materials and methods). We therefore conducted all transcytosis, recycling and imaging experiments after serum starvation.

Co-localization of FcRn with markers for intracellular compartments

To identify FcRn-positive intracellular compartments, we compared the distribution of FcRn with distributions of
Fig. 2. Confocal images of FcRn and FcRn-GFP distributions in serum-starved cells in the presence or absence of ligand. Bar, 5 μm. Sections labeled as apical, tight junctions, nucleus and basolateral are X–Y planes that were taken 1, 3, 6 and 9 μm, respectively, from the apical surface of the monolayer. Bottom panels show X-Z views of the cell monolayer. FcRn–GFP was detected using fluorescence from GFP, and FcRn was detected using a labeled secondary antibody bound to an anti-rat FcRn monoclonal antibody (see Materials and methods). The similarity in the distributions of FcRn and FcRn–GFP indicates that addition of GFP to the cytoplasmic tail of FcRn did not disrupt localization and trafficking signals contained within the protein. (A) FcRn and FcRn–GFP distributions in the absence of ligand. (B) FcRn and FcRn–GFP distributions 60 min after adding 1 μM rat IgG at pH 7.3 to the apical side of the cell monolayer at 37°C. (C) Superposition of fluorescence from FcRn–GFP and IgG 60 min after adding 5 μM Alexa568-labeled rat IgG at pH 7.3 to the apical side of the cell monolayer. Regions of co-localization appear yellow. Although there is no detectable IgG fluorescence that does not co-localize with FcRn–GFP, much of the FcRn–GFP fluorescence that redistributes to the perinuclear and basolateral levels as a result of IgG addition does not co-localize with IgG, which may result from FcRn molecules bound to unlabeled IgG proteins present in the labeled IgG sample. Alternatively, IgG binding to FcRn may signal in trans to ligand-free FcRn.

dextran, early endosomal-associated protein-1 (EEA1), rab11 and transferrin, intracellular markers that have been characterized in MDCK cells (Leung et al., 2000; Wang et al., 2000). Dextran is a fluid phase marker for apical early endosomes when endocytosed for 7–10 min from the apical pole. EEA1 is a protein marker for the same compartments. Rab11 is a small GTP binding protein that serves as a marker in MDCK cells for apical recycling endosomes, which are tubulovesicular elements that are found above the nucleus and below the apical plasma membrane. Receptor-bound transferrin is a marker for the basolateral recycling pathway when transferrin is internalized from the basolateral side of MDCK cells. Transferrin-positive compartments include basolateral early endosomes, common endosomes and, to a more limited extent, apical early endosomes (Leung et al., 2000).

In the absence of IgG, we see extensive co-localization between dextran and FcRn–GFP and between EEA1 and FcRn–GFP in the apical cytoplasm (Figure 3A and C), suggesting that many of the ligand-free FcRn molecules are localized in apical early endosomes. After IgG addition (1 μM rat IgG added to the apical side of the monolayer at pH 7.3 for 1 h; 1 μM dextran added for the final 7 min), we see a higher percentage of dextran-only and GFP-only vesicles, and only partial co-localization of FcRn–GFP and dextran (Figure 3B), suggesting that IgG addition induces FcRn–GFP to move out of apical early endosomes. A similar conclusion is reached by comparing EEA1 and FcRn–GFP co-localization in the presence and absence of added IgG (Figure 3C and D). In contrast, the amount of co-localization between FcRn–GFP and rab11 increases with IgG addition, suggesting that some of the FcRn that moves out of apical early endosomes is transported to apical recycling endosomes (Figure 3E and F). Figure 3G and H demonstrates that FcRn also redistributes to transferrin-positive compartments at the nuclear and basolateral levels after IgG addition. Taken together, these results indicate that redistribution of FcRn after apical addition of IgG involves moving from apical early endosomes to apical recycling endosomes, common endosomes and basolateral early endosomes.

We also compared FcRn–GFP and Rab11 co-localization as a function of time after IgG addition. Figure 4
Fig. 3. Co-localization of FcRn–GFP with dextran, EEA1, Rab11 and transferrin. Bar, 5 μm. Sections labeled as apical, tight junctions, nucleus and basolateral were taken 1, 3, 6 and 9 μm, respectively, from the apical surface of the monolayer. Regions of co-localization appear in yellow. (A and B) Superposition of fluorescence from FcRn–GFP and dextran in the absence (A) or presence (B) of unlabeled IgG. Serum-free medium or medium containing IgG (1 μM) was incubated for 1 h at pH 7.3 on the apical side of the monolayer and Alexa568-labeled dextran was added apically for the final 7 min. (C and D) Superposition of fluorescence from FcRn–GFP and EEA1 in the absence (C) or presence (D) of IgG. (E and F) Superposition of fluorescence from FcRn–GFP and Rab11 in the absence (E) or presence (F) of IgG. (G and H) Superposition of fluorescence from FcRn–GFP and canine transferrin (Tf) in the absence (G) or presence (H) of IgG. Serum-free medium or medium containing IgG (1 μM) was incubated for 1 h at pH 7.3 on the apical side of the monolayer and Alexa568-labeled transferrin was added basolaterally for the final 15 min.

shows the distributions of FcRn–GFP and rab11 after 5, 30 and 60 min of 1 μM IgG addition to the apical side of cells at pH 7.3. Five minutes after IgG addition, FcRn–GFP and rab11 show limited co-localization at the apical and tight junction levels (Figure 4). Co-localization increases at these levels after 30 min of IgG addition, then diminishes...
The percentage of labeled IgG transcytosed as a function of time is shown in Figure 5A–D and the total mass of IgG transported is shown in Table II. Both FcRn- and FcRn–GFP-expressing cells transport significantly more IgG than untransfected cells. The FcRn-expressing cells transport slightly more IgG than the FcRn–GFP cells, perhaps reflecting higher levels of receptor expression or fewer non-expressing cells included in the experiments. For both cell lines, IgG internalized at pH 6.0 from the apical or basolateral side is transported to the opposite side (Figure 5A and C), but 4- to 5-fold more IgG is transcytosed in the apical to basolateral direction than in the basolateral to apical direction (Table II). We also observe FcRn-specific transcytosis in both directions when IgG is added to the loading surface at pH 7.3 (Figure 5B and D), again with higher efficiency (~4-fold) in the apical to basolateral direction as compared with the basolateral to apical direction (Table II).

In addition to being transcytosed, IgG is also recycled back into the loading side medium when internalized from either the apical or basolateral side of the monolayer (Figure 5E–H). Recycling occurs when IgG is added at either pH 6.0 or 7.3, but more IgG is recycled when added at acidic pH than basic pH (Table II). When we compare how much of the IgG initially added to the loading side is recycled rather than transcytosed, we see that about equal amounts of IgG are recycled as are transcytosed when added apically at either pH 6.0 or pH 7.3 (Table II). In contrast, over twice as much IgG is recycled as is transcytosed when IgG is added to the basolateral side at either pH (Table II). This result in part explains the greater efficiency of transcytosis in the apical to basolateral as compared with the basolateral to apical direction: a greater portion of the IgG internalized from the basolateral side is recycled than transcytosed, resulting in less IgG to be transported and released from the apical side.

Effects of wortmannin and nocodazole on transcytosis and recycling of IgG

We next tested the effects of compounds that interfere with vesicular transport on FcRn-mediated transport of IgG in MDCK cells. Cells were treated with wortmannin, a specific irreversible inhibitor of phosphoinositide 3-kinases (PI 3-kinases) at nanomolar concentrations (Arcaro and Wymann, 1993), or nocodazole, which inhibits polymerization of tubulin monomers (De Brabander et al., 1976). The effects of wortmannin on both recycling and transcytosis of IgG were assayed by adding the drug at either pH 6.0 or 7.3 to the loading side of MDCK monolayers expressing FcRn or FcRn–GFP. Figure 5 and Table II show that wortmannin (150 nM, 30 min incubation) effectively disrupts both apical to basolateral and basolateral to apical transcytosis of [125I]IgG at either pH 6.0 or 7.3 (Figure 5A–D). Interestingly, the effect of wortmannin on IgG recycling was different at the apical and basolateral sides. Whereas wortmannin effectively disrupts basolateral recycling of IgG (Figure 5G and H), apical recycling shows only a small decrease as a result of treatment with the drug (Figure 5E and F) (Table II). In contrast, all FcRn-mediated transport of IgG (transcytosis in both directions and recycling from both the apical and basolateral surfaces) is inhibited by nocodazole when IgG is internalized at either acidic or basic pH (Table II),

Transcytosis and recycling of IgG

In order to assess the directionality of IgG transport and compare the effects of internalization at acidic and basic pH, we used a quantitative assay. 125I-labeled rat IgG (15 μg/ml, 100 nM) was added to the apical or basolateral side of MDCK monolayers expressing FcRn or FcRn–GFP for 1 h at 4°C, after which the temperature was raised to 37°C for 3 min to allow internalization. The pH of the medium on the loading side of the cells was maintained either at pH 6.0 to allow receptor-mediated endocytosis through binding to cell surface FcRn, or at pH 7.3 to ensure that IgG entered the cells only through fluid phase endocytosis. The non-loading side of the monolayer was maintained at pH 7.3 to allow IgG release into the medium. After washing the loading surface at basic pH, we measured the amount of radiolabeled IgG in the non-loading side medium (representing transcytosed ligand) and the loading side media (representing recycled ligand) as a function of time. As a control, the same experiments were conducted with untransfected MDCK cells.

![Figure 4](image-url)
Fig. 4. Distribution of FcRn–GFP and Rab11 at different time points after internalization of 1 μM IgG from the apical surface at pH 7.3. Bar, 5 μm. Sections labeled as apical, tight junctions, nucleus and basolateral were taken 1, 3, 6 and 9 μm, respectively, from the apical surface of the monolayer. Regions of co-localization appear yellow. (Left-hand column) Five min after IgG addition, (middle column) 30 min after IgG addition, (right-hand column) 60 min after IgG addition.

after 60 min). In combination with the previous results (Figure 3), these data indicate that the trafficking pathway followed by FcRn after IgG addition involves moving from EEA1-positive apical early endosomes to rab11-positive apical recycling endosomes, then on to transferrin-positive common endosomes or basolateral early endosomes.
suggesting that all forms of FcRn-mediated transport of IgG require intact microtubules. These results are consistent with those obtained for FcRn-mediated transcytosis in inner medullary collecting duct (IMCD) cells (McCarthy et al., 2000). However, only basolateral to apical transcytosis of an FcyRII/FcRn chimeric protein expressed in MDCK cells was inhibited by nocodazole (Stefaner et al., 1999), which may reflect a different mechanism for transcytosis in the apical to basolateral direction when the FcRn ectodomain is absent.

Effects of wortmannin on FcRn–GFP distribution
Prior studies of the effects of wortmannin on MDCK and WIF-B cells showed that it induces the formation of large vacuoles to which apical membrane proteins are recruited (Tuma et al., 1999). To determine the location of FcRn in wortmannin-treated MDCK cells, we used confocal microscopy to visualize FcRn–GFP in the presence and absence of ligand. Serum-starved FcRn–GFP-expressing cells were incubated apically with pH 7.3 media in the absence of IgG or containing 1.0 μM IgG for 60 min, then
Table II. Total IgG transported or recycled by FcRn–GFP-expressing MDCK cells

<table>
<thead>
<tr>
<th>Apical to basolateral</th>
<th>Picograms of IgG transported at pH 6.0 (per filter)</th>
<th>Picograms of IgG transported at pH 7.3 (per filter)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No drug</td>
<td>Wortmannin</td>
</tr>
<tr>
<td>FcRn–GFP</td>
<td>1924 (42)</td>
<td>375 (10)</td>
</tr>
<tr>
<td>FcRn</td>
<td>2526 (51)</td>
<td>473 (13)</td>
</tr>
</tbody>
</table>

Basolateral to apical

| FcRn–GFP | 353 (9) | 75 (4) | 88 (4) | 330 (4) | 68 (5) | 69 (5) |
| FcRn | 599 (10) | 76 (6) | 110 (6) | 420 (8) | 54 (9) | 85 (8) |

Apical recycling

| FcRn–GFP | 2130 (45) | 1616 (28) | 480 (8) | 1411 (34) | 950 (15) | 385 (12) |
| FcRn | 2461 (45) | 1901 (34) | 360 (12) | 1710 (32) | 1283 (23) | 285 (10) |

Basolateral recycling

| FcRn–GFP | 908 (21) | 147 (5) | 120 (8) | 721 (13) | 101 (3) | 125 (7) |
| FcRn | 1295 (17) | 142 (8) | 130 (15) | 862 (14) | 118 (7) | 105 (6) |

The average of three measurements is shown with the standard deviation in parentheses for each value.

Treated with 50, 100 or 150 nM wortmannin for an additional 30 min. In both untreated and ligand-treated cells, incubation with wortmannin resulted in recruitment of FcRn–GFP to vacuoles near and just below the level of the tight junctions (Figure 6A and B) (shown for 150 nM wortmannin; similar results were obtained after treatment with 50 and 100 nM wortmannin). In ligand-treated cells, FcRn–GFP-containing vacuoles were also detected near the perinuclear region, but fluorescence from FcRn–GFP was not detected near the basolateral membrane (Figure 6B), as predicted from the wortmannin-induced disruption of apical to basolateral transcytosis described above (Figure 5A and B).

In addition to the vacuolar localization in wortmannin-treated cells, we observe that FcRn–GFP is found in small vesicles just below the apical membrane and near the tight junctions (Figure 6B). Since apical recycling persists in wortmannin-treated cells (Figure 5E and F), we reasoned that these vesicles could be apical early endosomes involved in recycling. To establish their identity, we used the apical early endosome marker protein EEA1 and the apical recycling endosome marker rab11 (Leung et al., 2000). In cells treated with wortmannin and ligand, EEA1 is not recruited into vacuoles (Figure 6C and D). Instead, EEA1 co-localizes with FcRn–GFP in the small vesicles but not in the large FcRn–GFP-positive vacuoles (Figure 6D). Rab11 does not co-localize extensively with the FcRn–GFP-positive small vesicles (Figure 6E). Taken together with results from the quantitative transport assays (Figure 5 and Table II), these results indicate that wortmannin prevents transit of FcRn into rab11-positive apical recycling endosomes, thereby preventing apical to basolateral transcytosis, but that apical recycling from EEA1-positive apical early endosomes persists after wortmannin treatment.

To address the fate of internalized IgG after wortmannin treatment, we used internalized low density lipoprotein (LDL) as a marker for lysosomal compartments (Brown et al., 2000) and compared its distribution with that of labeled IgG in the presence and absence of wortmannin. Labeled IgG added to the apical surface in the absence of wortmannin is distributed throughout the cell and only partially co-localizes with LDL (Figure 7A). Upon treatment with wortmannin, IgG distribution becomes primarily apical (Figure 7B), as predicted by the wortmannin-induced prevention of apical to basolateral transcytosis (Figure 5A and B), but there is no significant increase in the amount of IgG that co-localizes with LDL. This result suggests that wortmannin treatment does not induce increased trafficking of IgG into lysosomes for degradation. Instead, most of the IgG added probably exits the cells through the apical recycling pathway.

Discussion

Although the interaction between FcRn and IgG has been thoroughly characterized at the biochemical and structural levels (reviewed in Ghete and Ward, 2000; Martin et al., 2001), less is known about the mechanisms by which FcRn transports IgG in polarized epithelial cells. Here we describe a system to study IgG transcytosis and recycling by rat FcRn expressed in MDCK cells. In order to ensure functional binding to IgG, we expressed rat β2-microglobulin (the FcRn light chain) along with the rat FcRn heavy chain. Previous studies demonstrated that β2-microglobulin is critically involved in FcRn recognition of IgG: the N-terminal portion of β2-microglobulin contacts Fc (Martin et al., 2001) and alanine substitution of the N-terminal residue of rat β2-microglobulin (iso- leucine) diminished IgG binding to undetectable levels (Vaughn et al., 1997). MDCK cells express canine β2-microglobulin, which contains an N-terminal valine instead of isoleucine (DDBJ/EMBL/GenBank accession No. P19341). It is not known whether canine β2-microglobulin can substitute for other species of β2-microglobulin to produce functional IgG-binding FcRn heterodimers. However, the inability to detect IgG binding to cell surface human FcRn expressed in MDCK cells in the absence of human β2-microglobulin (Praetor et al., 1999) may reflect the importance of species-specific association of β2-microglobulin with FcRn for proper recognition of IgG. In contrast, we detected pH-specific binding of IgG to the rat FcRn/rat β2-microglobulin heterodimers expressed in MDCK cells for this study (Figure 1).
Having verified that rat FcRn expressed in MDCK cells functions in pH-specific binding of IgG, we used confocal imaging to localize FcRn in the transfected MDCK cells. In the absence of ligand, we found that both FcRn and an FcRn with a C-terminal GFP tag were localized primarily to the apical membrane and to vesicles at the level of and above the tight junctions (Figures 2A and 8). These results are consistent with the localization of FcRn to the apical surface and apical vesicular compartments in brush border epithelial cells from neonatal intestine (Berryman and Rodewald, 1995). Upon addition of rat IgG to FcRn-expressing MDCK cells, both FcRn and FcRn–GFP redistributed to locations away from the apical surface, such that fluorescence was also seen in vesicles below the tight junctions and near the basolateral membrane (Figures 2B and 8). A similar redistribution of FcRn was also observed when ligand was added to cannulated jejunal segments isolated from neonatal rats (Berryman and Rodewald, 1995); thus, FcRn expressed in MDCK cells faithfully reproduces this aspect of FcRn function in vivo. The fact that FcRn relocates upon ligand addition demonstrates that the addition of IgG either induces or stimulates transcytosis; thus, apical to basolateral trafficking of FcRn in the absence of ligand is not completely constitutive. We also found that the use of serum containing bovine IgG induced a similar redistribution of FcRn (data not shown). Redistribution of FcRn caused by transport of bovine IgG in serum could account in part for the predominance of basolateral surface expression over apical surface expression seen for rat FcRn expressed in IMCD cells (McCarthy et al., 2000).

To compare the amounts of IgG transported by transcytosis in the apical to basolateral and reverse directions, we used a quantitative assay to measure transcytosis and recycling in FcRn- and FcRn–GFP-expressing MDCK cells. Both cell lines exhibited FcRn-mediated transcytosis and recycling of radiolabeled IgG (Table II); thus, addition of GFP C-terminal to the cytoplasmic tail of FcRn did not disrupt its ability to transport IgG. This result, when combined with the similar distributions of FcRn and FcRn–GFP (Figure 2A and B), demonstrates that GFP fluorescence can be used to reliably report the location of FcRn. Consistent with previous studies (Praetor et al., 1999; McCarthy et al., 2000), we find FcRn-mediated IgG transport in both the apical to basolateral and basolateral to apical directions. However, apical to basolateral transport is more efficient in both the FcRn- and FcRn–GFP-expressing cells, with ~4– to 5-fold more IgG transported in this direction as compared with the opposite direction (Table II). Since the in vivo

![Image of FcRn trafficking and transport of IgG in MDCK cells](https://example.com/fig6.png)
functions of FcRn include transport of IgG across cell barriers when internalized at neutral pH (Ghetie and Ward, 2000), we compared the amount of IgG transported when it was internalized at acidic versus basic pH. We found that FcRn-specific transcytosis of IgG occurs when ligand is added to the loading surface at either pH 6.0 or 7.3 (Figure 5A and B), demonstrating that a non-receptor-mediated uptake mechanism such as fluid phase endocytosis can deliver IgG to FcRn-containing compartments for transport. This is confirmed by co-localization of IgG with FcRn in intracellular vesicles when IgG is added to MDCK cells at basic pH (Figure 2C). In contrast, internalization of IgG required incubation at acidic pH in studies of human FcRn expressed in MDCK cells and rat FcRn expressed in IMCD cells (Praetor et al., 1999; McCarthy et al., 2000).

We also observe recycling of IgG when it is added to either the apical or basolateral side of MDCK monolayers (Figure 5E–H). Approximately equal amounts of IgG are recycled as are transcytosed when IgG is added at either acidic or basic pH to the apical side of FcRn-expressing MDCK cells, whereas about twice as much IgG is recycled as is transcytosed when IgG is added at either pH to the basolateral side (Table II). This result accounts in part for the greater efficiency of apical to basolateral as compared with basolateral to apical transcytosis that we observe in the FcRn- and FcRn–GFP-expressing MDCK cells. The predominantly apical distribution of FcRn prior to ligand addition is another factor that influences the greater efficiency of apical to basolateral transport.

Wortmannin, a selective inhibitor of PI 3-kinases, selectively disrupts steps in the endocytic pathway in polarized and non-polarized cells (Cardone and Mostov, 1995; Spiro et al., 1996; Tuma et al., 1999; McCarthy et al., 2000). We evaluated the effects of wortmannin on FcRn-mediated transcytosis and recycling using a quantitative assay and on FcRn distribution using confocal microscopy. Confocal images of wortmannin-treated FcRn–GFP cells that have internalized IgG from the apical side (Figure 6B, D and E) do not show the extensive ligand-induced redistribution of FcRn–GFP observed in non-treated cells (Figure 2B). Consistent with this observation, we found that FcRn-mediated transcytosis of IgG was almost completely inhibited by wortmannin treatment in both the apical to basolateral and basolateral to apical directions (Figures 5A–D and 8), demonstrating that PI 3-kinases are required for transcytosis by FcRn. These results are consistent with previous studies of basolateral to apical transcytosis of IgG by FcRn expressed in IMCD cells (McCarthy et al., 2000), although in that study, apical to basolateral transcytosis was reduced by only 50–60% by wortmannin treatment, perhaps representing cell type-specific differences.

Although we observed almost complete inhibition of transcytosis of ligand added at either the apical or basolateral side of FcRn-expressing MDCK cells (Figure 5A–D), the effects of wortmannin on FcRn-mediated recycling of IgG differ at the apical and basolateral sides. Whereas basolateral recycling of IgG was almost totally inhibited by wortmannin (Figure 5G and H), apical recycling showed only a small decrease (Figure 5E and F), implying different mechanisms for IgG endocytosis at the apical and basolateral surfaces. This suggestion is consistent with pharmacological studies in WIF-B and MDCK cells in which addition of PI 3-kinase inhibitors affected apical endocytosis differently than basolateral endocytosis (Tuma et al., 1999).

To study the trafficking pathway of FcRn in MDCK cells, we compared the distribution of FcRn in the presence and absence of added ligand with distributions of markers for different intracellular compartments. In the absence of IgG, FcRn–GFP co-localizes with the fluid phase marker dextran (Figure 3A); thus, proteins such as IgG that enter the cell by fluid phase endocytosis will encounter FcRn. When IgG is added to the apical side of cells, a substantial proportion of FcRn–GFP moves out of dextran- and EEA1-positive compartments and enters Rab11-positive compartments at the level of the tight junctions and above, and transferrin-positive compartments at the level of the nucleus and near the basolateral membrane (Figure 3E–H).

When IgG is added apically to the FcRn–GFP-expressing cells, approximately equal amounts of IgG are recycled back to the apical media as are transcytosed to the basolateral side of cells (Table II). Examination of the effects of wortmannin on apical to basolateral transcytosis and apical recycling allows us to suggest which compart-
ments mediate transcytosis versus recycling. Wortmannin treatment causes redistribution of FcRn-GFP into large vacuoles at the apical pole (Figure 6A, B, D and E), as observed for other apical membrane proteins (Tuma et al., 1999), but some of the FcRn-GFP fluorescence remains in EEA1-positive, but rab11-negative, small vesicles (Figure 6D and E). Since FcRn-mediated apical recycling of IgG is largely unaffected by wortmannin treatment (Figure 5E and F), we suggest that apically internalized IgG recycles back to the apical surface from these EEA1-positive compartments without passage into other endosomal compartments for which PI 3-kinase activity is required for transport (Figure 8). In contrast, apical recycling of other proteins, such as IgA and transferrin, occurs from apical recycling endosomes (Leung et al., 2000; Mostov et al., 2000). FcRn-mediated apical to basolateral transcytosis of IgG, which is prevented by wortmannin treatment (Figure 6A and B), involves passage through rab11- and transferrin-positive compartments, as evidenced by the finding that ligand-distribut-
ated FcRn-GFP co-localizes extensively with rab11 only in the absence of wortmannin treatment (Figures 3F and 6E). These results are summarized in a schematic representa-
tion in Figure 8.

Understanding the molecular determinants involved in transcytosis and recycling of IgG is critical for understanding FcRn function. Here we present an in vitro system that faithfully reproduces FcRn function in IgG transport. In particular, the FcRn- and FcRn–GFP–express-
ing cells transcytose and recycle IgG when added at either acidic or basic pH; thus, both receptor-mediated and fluid phase endocytosis pathways can be investigated. The finding that IgG induces a redistribution of FcRn implies that ligand binding transmits a signal to stimulate transcytosis, the nature of which can be investigated in future experiments. FcRn is one of only a few receptors that transcytoses ligand in the apical to basolateral direction. Our studies on transcytosis indicate that apical to basolateral transcytosis is preferred over basolateral to apical transcytosis, but the mechanism whereby preferen-
tial transcytosis in one direction is achieved is unknown. We also do not understand what factors influence whether IgG is transcytosed or recycled by FcRn. Further studies to elucidate the mechanisms of FcRn-mediated transcytosis and recycling will facilitate efforts to use FcRn transport of IgG for therapeutic administration of antibodies.

Materials and methods

Reagents

Unlabeled rat and bovine IgG were purchased from Jackson Immunological Research as mixtures of subclasses. 125I-labeled rat IgG was prepared by ICN Radiochemicals. Mouse monoclonal antibodies against EEA1 were purchased from BD-Transduction Laboratories. Rabbit polyclonal antisera against rab11 and the tight junction-associated protein ZO-1 were obtained from Zymed. The anti-rat FcRn and anti-rat β2-microglobulin mouse monoclonal antibodies (1G3 and 4C9) were generated in our laboratory (Raghavan et al., 1994) and can be purchased from the American Tissue Culture Collection. Alexa568-labeled secondary antibodies (goat anti-mouse and goat anti-rabbit), Alexa568-labeled dextran and Dil-labeled LDL were obtained from Molecular Probes. Canine apo-transferrin was purchased from Sigma-Aldrich and loaded with iron as described (Yamashiro et al., 1984). Transferrin and rat IgG were labeled with Alexa568 dye following the instructions in the Alexa labeling kit supplied by Molecular Probes. Wortmannin, nocodazole, cycloheximide and fetal bovine serum (FBS) were purchased from Sigma-Aldrich. Dulbecco’s modified Eagles’s medium (DMEM) was

Figure 8. Schematic model of FcRn distribution in the absence (left) and presence (right) of IgG. In the absence of IgG, FcRn is distributed primarily in apical early endosomes (AEE) at the level of the tight junctions and above and at the apical surface. Upon IgG internalization from the apical surface, FcRn redistributes to more basolateral locations, including supranuclear apical recycling endosomes (ARE) transferrin-positive compartments [common endosomes (CE) and basolateral early endosomes (BEE)] and the basal membrane, where IgG is released into the medium. IgG transcytosis and IgG-induced redistribution of FcRn are inhibited by wortmannin. Recycling of apically internalized IgG is mediated by wortmannin-insensitive AEE that label with the fluid phase marker dextran.
obtained from Meditech. Low IgG FBS was obtained from HyClone and certified to contain 50 μg/ml bovine IgG. G418 and non-essential amino acids were purchased from Gibco BRL. Optically transparent filter membrane inserts (0.4 μm pore, 25 mm diameter) and six-well plates were obtained from Becton Dickinson Labware.

Construction of expression vectors

Genes encoding rat FcRn and rat β2-microglobulin were modified by PCR to incorporate 5’ Aspa718 and 3’ HindIII restriction sites, then subcloned with Asp718/HindIII double digests into the mammalian cell expression vector pCB6-HindIII (gift from Ira Mellman, Yale University), which carries the mouse embryo stem cell resistance gene for G418 selection. The enhanced GFP (EGFP) gene was amplified from the pEGFP-1 vector (Clontech) using PCR to remove the start codon and to introduce a 5’ in-frame Xhol site and a 3’ HindIII site, then subcloned into a pBluescript II SK+ vector (Stratagene). PCR was used to introduce a 5’ Aspa718 site and an in-frame 3’ HindIII site at the 3’ end of the rat FcRn gene, which was then introduced into the EGFP Bluescript vector. The resulting open reading frame, which encoded the entire FcRn amino acid sequence, a leucine-glutamine linker region and EGFP without its N-terminal methionine, was subcloned with a Asp718/HindIII double digest into the expression vector pCB6-HindIII.

Cell culture and transfection

MDCK (type II) cells (gift of Dr. Ann Hubbard, Johns Hopkins Medical School, Baltimore, MD) were grown in DMEM containing non-essential amino acids, 2 mM glutamine (medium A) and 10% FBS in a 5% CO2 incubator maintained at 37°C. Expression vectors encoding full-length FcRn or the FcRn-GFP fusion protein were co-transfected with a rat β2-microglobulin expression vector using a calcium phosphate procedure as described (Ramalingam et al., 2000). Transfected MDCK cells were maintained in medium A containing medium A supplemented with 250 μg/ml G418. FcRn-expressing cells were isolated using a Coulter Elite flow cytometer (Beckman Coulter Inc) and rhodamine-labeled Fab fragments generated from the anti-FcRn monoclonal antibody 1G3 (Raghavan et al., 1994) (FcRn and FcRn-GFP MDCK cells) or GFP fluorescence (FcRn-GFP MDCK cells). Expression of rat β2-microglobulin was confirmed by staining with the anti-rat β2-microglobulin-specific monoclonal antibody 4C9 (data not shown).

For transport assays and imaging studies, cells were grown to confluence in 10 cm dishes, then trypsinized and seeded to a density of 5 × 10⁴ on 0.4 μm filter inserts in a six-well plate. For experiments involving IgG loading, the pH of the media was maintained at pH 6.0 on the loading side and 7.3 on the non-loading side, or kept at pH 7.3 on both sides of the monolayer. The intactness of MDCK monolayers was verified by measuring the electrical resistance across the cells (typically 300–350 kΩ/cm²) using an epithelial voltohmeter (World Precision Instruments) and by an increase in cell height (monitored by confocal microscopy) following the formation of tight junctions.

Calculations of apparent fluid volumes internalized

FcRn-GFP or untransfected cells were serum starved for 60 min, then incubated with 3 µM Alexa568-labeled IgG or Alexa568-labeled dextran at pH 6.0 or 7.3 for 7 min at 37°C. Cells were then washed on ice in phosphate-buffered saline (PBS) supplemented with 1 mM CaCl₂, 0.5 mM MgCl₂ and 0.25 mM MgSO₄ (PBS⁺) and lyzed in 1% Triton X-100 in PBS⁻. Fluorescence emission at 625 nm was read in a Spectra Max microplate spectrophotometer (Molecular Devices) after excitation at 570 nm. GFP does not contribute significantly to fluorescence at 625 nm when excited at 570 nm. Fluorescence readings from lysed cells were converted to apparent volumes using values for the fluorescence per microliter of labeled IgG or dextran, which were obtained from fluorescence readings of dilutions of known amounts of labeled dextran or IgG in 300 µl of lysis buffer.

Staining and confocal microscopy

MDCK cells expressing FcRn-GFP or FcRn were grown as monolayers on 0.4 μm optically transparent filter inserts. Unless otherwise noted, imaging was performed after cells were serum starved by incubating them for 60 min at 37°C in medium A buffered to pH 7.3 with 20 mM HEPES (medium A pH 7.3). For live cell staining at 4°C, cells were washed with PBS⁻ or serum-free media, then labeled with either 25 μg/ml anti-rat β2-microglobulin at pH 7.3 or 500 nM Alexa568-labeled rat IgG at pH 6.0 or 7.3 for 30 min. Cells were then washed with PBS⁻ and incubated with 2 µg/ml Alexa568-labeled goat anti-mouse secondary antibody (rat β2-microglobulin detection) or fixed directly (for IgG detection). For fixation, cells were incubated with 4% paraformaldehyde in PBS⁻ for 30 min at 4°C and 60 min at room temperature. For some samples, a methanol fixation step was also included as described (Tuma et al., 1999). Cells were washed twice after fixation with PBS⁺, then the filter membrane was excised from the filter insert and mounted on a slide using anti-fade mounting media (Vector laboratories).

For immunostaining of permeabilized cells, filter-grown cells were fixed as described above. Cells were then washed with PBS⁻, permeabilized with Triton X-100 (0.2–0.5%) in PBS⁻ and then washed and incubated for 35 min at 4°C with PBS⁻ supplemented with 1% bovine serum albumin (BSA). Primary antibodies were diluted in PBS⁻/1% BSA and incubated with the cells for 30 min at the following concentrations: anti-FcRn (10 μg/ml), anti-EBA1 (12 μg/ml), anti-rab11 (20 μg/ml) or anti-ZO-1 (10 μg/ml). After washing in PBS⁻ three times, cells were treated with 2 μg/ml Alexa568-labeled goat anti-mouse or goat anti-rabbit secondary antibody in PBS⁻ plus 1% BSA for 30 min, then washed and mounted on a slide as described above. For fluid phase uptake of dextran, cells were pulsed with 1.0 μM Alexa568-labeled dextran from the apical side for 7 min at 37°C, then incubated at 4°C, washed with PBS⁻, and fixed and mounted as described above. For labeling with canine transferrin, the basolateral side of the cells was washed twice with medium A, then incubated with medium A containing 0.2% BSA for 1 h at 37°C. Alexa647 transferrin was internalized from the basolateral side of the cell monolayer for 15 min. The temperature was then lowered to 4°C and the cells were washed with PBS⁻ and fixed and mounted as described above. For experiments involving IgG addition, Alexa568-, Alexa646- or unlabeled IgG was added at the specified concentrations at pH 7.3 to the apical side of the cell monolayer 60 min before fixin. To identify late endosomal and lysosomal compartments, BODIPY FL-cadherin (Bodipy FL) was internalized to the addition of surface at a concentration of 15 μg/ml for 30 min prior to fixing. Confocal imaging was carried out using a Leica TCS-4D confocal microscope interfaced with an Argon/Krypton/He-Ne Laser. Images were collected using a 63× oil immersion Neofluor objective (numerical aperture 1.4) as described (Ramalingam et al., 2000). X–Y sections were taken at the specified levels below the apical surface. X–Z sections of cell monolayers (Figure 2A and B) were produced using the X–Z sectioning option in the LCS NT software.

Transcytosis and recycling assays

Prior to transcytosis or recycling experiments, cells were serum starved by incubating them for 60 min at 37°C in medium A pH 7.3, followed by blocking with medium A pH 7.3 plus 1% BSA to minimize non-specific binding to the cell surface. [125I]IgG (100 nM, iodinated to 1 μCi/μg) was added to the medium on the apical or the basolateral side for 1 h at 4°C. The loading side of the cell monolayer was maintained either at pH 6.0 to allow IgG to enter cells by binding to cell surface FcRn or at pH 7.3 to ensure only fluid phase uptake of IgG, and the non-loading side of the monolayer was maintained at pH 7.3. For some experiments, cells were pre-incubated with Wortmannin (150 nM unless otherwise specified) or nocodazole (20 μM) for 30 min at 37°C in medium A supplemented with 15% BSA labeled IgG. Following a 3 min pulse at 37°C, the cells were washed three times at 37°C in medium A pH 7.3, and medium A pH 7.3/1% BSA plus 10 μM unlabeled rat IgG (to prevent re-internalization of transcytosed or recycled labeled IgG) was added to both sides of the cell monolayer. Every 2 min, media from the apical and basolateral sides were collected, replaced with fresh media, then counted in a Beckman 5500 γ counter. Radioactivity associated with the different time points was recorded as c.p.m. ApoA, c.p.m. ApoA₂, c.p.m. ApoA₄, ..., c.p.m. ApoB₁₀₀ (where Ap refers to media from the apical compartment and the subscripted number is the time point) or c.p.m. Bl₁₂, c.p.m. Bl₁₂, ..., c.p.m. Bl₉₀ (BL basolateral compartment). After the 80 min time point, the filter membrane was excised from the filter insert and cell-associated radioactivity (c.p.m. cell) was counted. The percentage transcytosis at each time point (t) was calculated from triplicate measurements as f(t) = [c.p.m. ApoBl₁₂(t) − c.p.m. ApoBl₁₂(0)] / [c.p.m. ApoBl₁₂(0)], where c.p.m. cell is the radioactivity on the non-loading side of the monolayer (for transcytosis) or the loading side (for recycling):

\[
\text{c.p.m. X}_t = \text{c.p.m. X}_0 + \text{c.p.m. X}_0 \times 100/\text{c.p.m. Bl}_{12} + \text{c.p.m. Bl}_{12} + \ldots + \text{c.p.m. Bl}_{12} + \text{c.p.m. ApoA} + \text{c.p.m. ApoA} + \ldots + \text{c.p.m. ApoA}_{100} + \text{c.p.m. cell} = \text{t}
\]

The total IgG transported or recycled (Table II) was calculated by summing the counts recorded for all time points for the non-loading side (for transcytosis) or the loading side (for recycling) of the cell monolayer with the cell-associated radioactivity (c.p.m. cell), then converting to picograms of IgG using the specific activity of the [125I]IgG.
Competition experiments
Transcytosis experiments were conducted as described above in the presence of increasing amounts of unlabeled bovine or rat IgG. Labeled and competitor IgG were added at pH 7.3 to the apical side of FcRn-GFP-expressing cells. The amount of [125I]rat IgG transported to the basolateral side of the cells was measured after 80 min for different concentrations of added unlabeled rat or bovine IgG. Measurements were made in duplicate and the percentage inhibition was calculated as 100 × (1 − c.p.m. plus inhibitor/c.p.m. minus inhibitor) for each concentration. The concentration at which 50% inhibition is achieved (IC50) was calculated from graphs of percentage inhibition versus inhibitor concentration as IC50 = 434 nM for bovine IgG and IC50 = 110 nM for rat IgG (data not shown).

Acknowledgements
We thank Drs Anne Kenworthy and Michael Ededin (Johns Hopkins University) for assistance with MDCK cell transfections, Dr Pamela L.Tuma (John Hopkins University, School of Medicine) for critical reading of the manuscript and advice concerning the Wortmannin experiments, Drs David Anderson and Scott Fraser for use of confocal microscopes, Rochelle Diamond (Caltech Cell Sorting Facility) for assistance with flow cytometry, and Drs Keith Mostov, Caroline Enns and members of the Bjorkman laboratory for critical reading of the manuscript. This work was supported by the NIH (GM41239) and the W.M. Keck Foundation Fund for Discovery in Basic Medical Research (P.J.B.).

References

Received July 18, 2001; revised December 3, 2001; accepted December 17, 2001.
Retraction

IgG transcytosis and recycling by FcRn expressed in MDCK cells reveals ligand-induced redistribution

T.S. Ramalingam, Scott A. Detmer, W. Lance Martin and Pamela J. Bjorkman

The EMBO Journal, 21, 590–601, 2002

We wish to inform you that we have been unable to reproduce a result described in the above paper. Specifically, we do not observe ligand-induced redistribution of FcRn expressed in MDCK cells when we compare confocal images of the distribution of FcRn–GFP in cells incubated in the presence or absence of IgG ligand (D.B. Tesar, N.E. Tiango, S.A. Detmer and P.J. Bjorkman, unpublished results). We are in the process of repeating the other experiments described in the paper and cannot yet comment on their reproducibility, but as ligand-induced redistribution was the focus of the paper and this result cannot be replicated, we wish to retract the paper now. We deeply regret any inconvenience our publication of this result has caused for others.

The first author of this paper (T.S.R.), who performed most of the experimental procedures and data analysis, has chosen not to be associated with this retraction.

Corrigendum

Crystal structure of human 53BP1 BRCT domains bound to p53 tumour suppressor

Dean J. Derbyshire, Balaku P. Basu, Louise C. Serpell, Woo S. Joo, Takayasu Date, Kuniyoshi Iwabuchi and Aidan J. Doherty

The EMBO Journal, 21, 3863–3872, 2002

We (the authors) acknowledge that a small number of sentences in our article describing the structure of the BRCT domains were duplicated from the paper of Williams et al. (Nat. Struct. Biol., 8, 838–842, 2001). We wish to apologize to Williams et al. for this unfortunate occurrence and we accept that these introductions should not have been included in our paper.